Exercices Algèbre SUP – Noyaux et Images Itérés

Exercice: Noyaux et Images Itérés

Soit E un espace vectoriel de dimension finie n sur un corps \mathbb{K} , et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$, soit $N_k = \ker(f^k)$ et $I_k = \operatorname{Im}(f^k)$. Soit $n_k = \dim(N_k)$ et $r_k = \dim(I_k)$

- Montrer que la suite $(n_k)_k$ est croissante stationnaire, et la suite $(r_k)_k$ est décroissante stationnaire.
- ② Montrer que la suite $(n_{k+1} n_k)_k$ est décroissante, et la suite de $(r_{k+1} r_k)_k$ est croissante.
- **3** Montrer que $n_k \le k n_1$ et $r_k \ge k r_1 n(k-1)$
- **4** A partir de cette question on suppose que l'endomorphisme f est nilpotent d'indice p. Montrer que $p \le n$, et que $f^n = 0$.
- **5** Supposons de plus que $n_1 = 1$. Montrer que f est cyclique, c.à.d qu'il existe $a \in E$ tel que $(a, f(a), \dots, f^{n-1}(a))$ est une base de E.