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1 HISTORICAL PROBLEMS

1 Historical problems

1.1 Compass and straightedge constructions

The plane is identified with the field C of complex numbers. We fix a set P of points of
the plane. We suppose that P contains 0 and 1 (usually P = {0, 1}). For each n > 0,
we define the set Pn of points of the plane constructible in n steps form P using compass
and straightedge. We set P0 := P . The set Pn is defined by adding to Pn−1 all the points
which are:

1. intersections of two straight lines, each containing at least two distinct points of
Pn−1

2. intersections of two circles centered at points of Pn−1, and having their radii equal
to distances between points of Pn−1

3. intersections of a straight line containing at least two distinct points of Pn−1 with a
circle centered at a point of Pn−1 and with radius equal to the distance between two
points of Pn−1.

The union K(P ) :=
⋃
n∈N

Pn is called the set of points constructible from P using

straightedge and compass. The set K({0, 1}) is called the set of constructible points.

Exercise 1.1. All the elements of Q+ i.Q are constructible.

Lemma 1.2. Let P be a subset of C. Then the sum and product of two elements of K(P )
are in K(P ). The conjugate, opposite, inverse and square roots of an element of K(P )
are in K(P ).

We say that a subfield L of C is stable under taking square roots if and only if for any
x ∈ C, if x2 ∈ L then x ∈ L.

Remark 1.3. Let P ⊂ C. The set of subfields of C containing P and closed under taking
square roots and complex conjugates is not empty, since it contains C. The intersection of
all the fields of this set is the smallest field containing P and closed under taking square
roots and complex conjugates. Denote this field by K2(P ).

Lemma 1.4. Let L ⊂ C be a field stable under taking complex conjugates and square
roots. Then for any element z = x+ i.y ∈ C, z ∈ L if and only if x, y ∈ L.

Proposition 1.5. Let P ⊂ C. Then the set K(P ) of constructible points from P is the
smallest field containing P and closed under taking complex conjugates and square roots.
So K(P ) = K2(P ).

Proof. By Lemma 1.2, the set K(P ) is a field closed under taking square roots and complex
conjugates. So K2(P ) ⊂ K(P ). The other inclusion is done by induction, showing that
for any n, Pn ⊂ K2(P ). This is clear for n = 0. Suppose that Pn ⊂ K2(P ). Then by
Lemma 1.4, all the coordinates of all the elements of Pn are elements of K2(P ). It is easy
to check that the coordinates of all elements of Pn+1 are in K2(P ), hence again by Lemma
1.4, Pn+1 ⊂ K2(P ).
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1.2 Expressing the roots of polynomial equations. 1 HISTORICAL PROBLEMS

Deciding whether a point a is constructible comes then to the same as deciding whether
a is an element of K2({0, 1}). It is easy to show that a is in K2({0, 1}) if and only if there
exists a tower of subfields of C:

K0 = Q ⊂ K1 ⊂ · · · ⊂ Kn

such that a ∈ Kn, and for any 0 < i ≤ n, Ki is generated by
√
ai over Ki−1, for some

ai ∈ Ki−1. For this, one can check easily by induction that the set of such a is a field,
closed under taking square roots and complex conjugates, and that this field is contained
in K2(P ).

We will come back later to the straightedge and compass constructions. We will show
that 3

√
2 is not constructible, and this shows that the cube doubling problem (also known

as the Delian problem) is unsolvable. This problem involves drawing a cube with twice the
volume of a given cube, using only a straightedge and a compass. The number cos(π9 ) will
also be shown not to be constructible. This shows the impossibility of angle trisection in
the general case, using only a straightedge and a compass (note that there are constructible
points A,B,C, with [ ~AB, ~AC] = π

3 ). We will also give a characterization of constructible
regular n-gons.

1.2 Expressing the roots of polynomial equations.

Another historical problem concerns finding solutions to polynomial equations. It can be
shown that any polynomial P ∈ C[X] with degree n has n roots in C - counting with
multiplicities. The problem is to calculate these roots.

We start first with an intuitive notion. Let L be a field, (ai)i∈I be a family of elements
of L, and a ∈ L. We say that a has an algebraic expression in the ai, (or over the family
(ai)i∈I), if a can be obtained from the ai using the four arithmetic operations, and taking
roots of arbitrary degree.
So the complex numbers

√
2,

1√
2 +
√

3
,

1 + 7

√
2−

√
1− 3

3√5

3 +
√
−1

have algebraic expressions over Q. In our notations, each of the above expressions has
many possible values.

Let P ∈ C[X] be a polynomial of degree two. Then the roots of P can be expressed
algebraically in its coefficients. The same will be shown to hold for polynomials of degree
3 and 4. However, we will show that the roots of the polynomial X5− 4X + 2 do not have
algebraic expressions over Q.

Definition 1.6. Let K ⊂ L be two fields.

1. Let a ∈ L and n ∈ N∗. Then a is said to be a nth-root over K if an ∈ K.

2. The field K is said to be closed in L under taking roots if whenever a ∈ L is a
nth-root over K, then a ∈ K.

5



1.2 Expressing the roots of polynomial equations. 1 HISTORICAL PROBLEMS

Given two fields K ⊂ L, we denote by Kr
L, or by Kr if there is no possible confusion,

the set of elements of L having an algebraic expression over K. It can be easily shown by
induction on the number of operations needed to express algebraically an element a ∈ Kr

L

over K, that Kr
L is the set of elements a ∈ L such that there exists a tower of subfields of

L:
K0 = K ⊂ K1 ⊂ · · · ⊂ Kn

with a ∈ Kn, and for any 0 < i ≤ n, Ki is generated by some ni
√
ai over Ki−1, for some

ai ∈ Ki−1 and ni ∈ N∗. As above, one shows by induction that Kr
L is the smallest subfield

of L containing K and closed under taking roots.

Denote by Qalg the set those elements of C which are roots of some polynomial P ∈ Q[X].
We will show later that Qalg is a field, it is called the field of algebraic numbers. It is clear
that Qalg is closed under taking roots. So we have

Q ⊂ Qr ⊂ Qalg ⊂ C.

The first inclusion is strict, since
√

2 is in Qr and not in Q, and the last is strict for
cardinality reasons (exercise), or by Exercise 5.3. One of the aims of this lecture is to
show that the second inclusion is strict as well. Equivalently to what has been claimed
above, the roots of the polynomial X5 − 4X + 2 are obviously in Qalg, but will be shown
not to be in Qr.
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2 INTRODUCTION

2 Introduction

2.1 Fields and field extensions

Definition 2.1. Let (K,+, ., 0, 1) be a field. The characteristic char(K) of K is the
smallest natural number n such that n.1 = 0 when such a number exists, and 0 in the
other case.

Lemma 2.2. If char(K) = n > 0, then n is a prime number.

Proof. Suppose for a contradiction that the characteristic of K is a non prime number n,
and let 1 < a, b < n be such that n = a.b. By the definition of char(K), we have that
a.1 6= 0. Let α ∈ K be the multiplicative inverse of a.1, so α.(a.1) = 1. Now we have that

0 = α.0 = α.(n.1) = α.((a.b).1) = α.((a.1).(b.1)) = (α.(a.1)).(b.1) = 1.(b.1) = b.1

So b.1 = 0 and b < n. This contradicts the definition of n.

The following can be easily checked.

Remark 2.3. Let K be any field. The application Φ which to each n ∈ Z associates
the elements n.1 ∈ K defines a ring homomorphism between Z and a subring of K. If
char(K) = 0, then Φ is injective, and the ring Z of integers can be regarded as a subring
of K. In this case, Φ can be extended to a field isomorphism between Q and a subfield of
K, so Q can be regarded as a subfield of K. Now if the characteristic char(K) of K is a
prime number p, then the kernel of Φ is the ideal p.Z, and Φ factors into an isomorphism
between Fp and a subfield of K. So in this case, Fp can be regarded as a subfield of K.

Definition 2.4. 1. Let K,L be two fields. We say that L is an extension of K or that
L/K is a field extension if K is a subfield of L.

2. Given an extension M of a field L which is in turn an extension of a field K, then L is
said to be an intermediate field (or intermediate extension) of the field extension
(M/K).

It is easy to check that if K is a field and L is a ring containing K, then L can be
canonically endowed with a K-vector space structure. So if (L/K) is a field extension,
then L is a K-vector space, and moreover L and K have the same characteristic.

Definition 2.5. Let (L/K) be a field extension. The dimension of the extension (L/K),
denoted by [L : K], is the dimension of L as a K-vector space. If this dimension is finite
(respectively infinite) we say that L is a finite (respectively infinite) extension of K, or
that the extension (L/K) is finite (respectively infinite).

Proposition 2.6. Let (M/K) be a field extension, and L be an intermediate field. Then
[M : K] = [M : L].[L : K]

Proof.

Remark 2.7. The above formula shows that [M : L] and [L : K] divide [M : K].

Corollary 2.8. Let K1 ⊂ K2 ⊂ · · ·Kn be a tower of fields. Then

[Kn : K1] = [Kn : Kn−1].[Kn−1 : Kn−2]. · · · .[K2 : K1].

7



2.1 Fields and field extensions 2 INTRODUCTION

Proof. Obvious by induction.

Corollary 2.9. Let M,L and K be as above. If [M : K] is finite, then both [M : L] and
[L : K] are finite.

Proof. If m1, · · ·mn are n different L−linearly independent elements of M , and l1, · · · lp
are p different K−linearly independent elements of L, then the above arguments shows
that the milj are K-linearly independent elements of M . So n.p ≤ [M : K], and both
[M : L] and [L : K] are ≤ [M : K].

Notation: For a field K and a free variable X, K[X] denotes the ring of polynomials
in X with coefficients in K, and K(X) denotes the field of rational functions in X with
coefficients in K.

Proposition 2.10. 1. Let K,L be two rings with K ⊂ L, and let A be a subset of L.
Then there is a unique ring R with K ⊂ R ⊂ L containing A and minimal for the
inclusion among the rings I containing A with K ⊂ I ⊂ L. This ring is denoted by
K[A].

2. The ring K[A] is the set E of elements of L of the form T (a1, · · · , an) where T is a
polynomial of K[X1, · · · , Xn] and the ai are elements of A.

Proof. 1. Let P be the set of rings I containing A, with K ⊂ I ⊂ L. The set P
is not empty, since L ∈ P. Let K[A] be the intersection of all the rings from P.
It is obvious that K[A] is the unique minimal ring R containing A and satisfying
K ⊂ R ⊂ L.

2. It is clear that an element of E is contained in any ring I containing A and satisfying
K ⊂ I ⊂ L. On the other hand, it is clear that E is a ring. So E = K[A].

The ring K[A] is called the ring generated by A over K. If A = {a1, · · · , an}, then
K[A] will be denoted by K[a1, · · · , an]. It can be easily checked that K[A∪B] = K[A][B].

Proposition 2.11. 1. Let L/K be a field extension, and A be a subset of L. Then there
is a unique intermediate field of the extension L/K, denoted by K(A), containing
A, and minimal for the inclusion among the intermediate fields containing A.

2. K(A) is the set E of elements of L of the form

T (a1, · · · , an)

U(a1, · · · , an)

where T and U are polynomials of K[X1, · · · , Xn] and the ai are elements of A with
U(a1, · · · , an) 6= 0.

Proof. 1. Let P be the set of intermediate fields containing A. The set P is not empty,
since L ∈ P. Let K(A) be the intersection of all the fields from P. It is obvious that
K(A) is the unique minimal intermediate field containing A.

2. It is clear that an element of E is contained in any intermediate field containing A.
On the other hand, it is clear that E is a field. So E = K(A).

8
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The extension K(A) is called the extension generated by A over K. If A =
{a1, · · · , an}, then K(A) is often denoted by K(a1, · · · , an). It can be easily checked that
K(A ∪B) = K(A)(B).

Definition 2.12. Let K be a field, and P be a polynomial with coefficients in K. A
splitting field of P over K is any extension L of K, in which P splits into linear factors,
and which is minimal for inclusion with this property.

2.2 Polynomials

2.2.1 Basic definitions and properties

For a field K and a variable X, we denote by K[X] the ring of polynomials in X with
coefficients in K. A basic fact about K[X] is that it is a Euclidean domain. Euclidean
domains are domains endowed with a Euclidean function, or norm function, for which a
division algorithm holds. In K[X], the norm of a polynomial is defined as being its degree
( the norm of the zero polynomial is −∞). For two polynomials A,B ∈ K[X], there exist
unique polynomials Q,R ∈ K[X] with deg(R) < deg(B), and such that

A = Q.B +R.

The polynomials Q and R are called respectively the quotient and the remainder of the
division.

By uniqueness, it is easy to see that the quotient and remainder are independent of the
field K in the following sense: if L is an extension of K, then the quotient and remainder
of P divided by P ′ are unchanged, independently of whether P, P ′ are considered as
polynomials in K[X] or L[X].

So in the Euclidean domain K[X], the Euclidean algorithm holds. This algorithm yields
for two polynomials A and B their greatest common divisor (gcd). This is the unique
monic polynomial with the highest possible degree, dividing both A and B. Furthermore,
if gcd(A,B) = G, then the Euclidean Algorithm gives an expression of G of the form:

G = U.A+ V.B,

for some polynomials U, V ∈ K[X]. The polynomials P and Q are said to be relatively
prime if gcd(P,Q) = 1.

Proposition 2.13. Let P,Q ∈ K[X] \ {0} and L be an extension of K. Then gcd(P,Q)
is unchanged, independently of whether P and Q are considered as polynomials in K[X]
or L[X]. In particular, P divides Q in K[X] if and only if P divides Q in L[X], and
gcd(P,Q) = 1 in K[X] if and only if gcd(P,Q) = 1 in L[X].

Proof. Let D and D′ be the gcd of P and Q in K and L respectively. Every polynomial
in K[X] is also a polynomial in L[X]. So in L[X], the polynomial D divides P and Q, so
it divides D′.
Let U, V ∈ K[X] be such that D = UP + V Q. In L[X], the polynomial D′ divides P and
Q, so it divides D (in L[X]).
Consequently, the monic polynomials D and D′ divide each other in L[X], and so they
are equal.

9



2.2 Polynomials 2 INTRODUCTION

Every Euclidean domain is a principal ideal domain (PID). So every ideal I of K[X]
can be generated by some polynomial P , in which case we write I =< P >. This is a
direct consequence of the Euclidean algorithm: take for P any non-zero element of I with
minimal degree. For any element A ∈ I, let Q,R ∈ K[X] be such that A = Q.P + R,
with deg(R) < deg(P ). The polynomials A and P are in the ideal I, so the same holds for
R = A − Q.P . But deg(R) < deg(P ), and by definition, the degree of P is the smallest
possible degree of a non-zero element of I, so R = 0. This shows that every element of I
is a multiple of P , thus I =< P >.

In an integral domain, we have the notions of irreducible and prime elements. Let a be
a non-unit element. Then a is said to be irreducible , if it is not the product of two
non-units. a is said to be prime if whenever a divides a product α.β, then a divides α
or a divides β. In an integral domain, every prime is irreducible, and in principal ideal
domains, the two notions coincide. A consequence of this fact is the following

Proposition 2.14. Let K be a field, X be a free variable, and P ∈ K[X] be an irreducible
polynomial of degree n. Then K[X]/ < P > is an integral domain and a n dimensional
vector space over K.

K[X]/ < P > is in fact a field.

Proposition 2.15. Let K be a field, and L be an integral domain containing K which is
a finite dimensional K-vector space. Then L is a field.

Proof. Let a 6= 0 be any element of L. Since the dimension of L is finite over K, the
elements 1, a, a2, · · · , ai, · · · are K-linearly dependent. Let

km.a
m + km+1.a

m+1 + km+2.a
m+2 + · · ·+ kna

n = 0

be a non trivial K-linear combination of the ai,m ≤ i ≤ n, for some m < n ∈ N, with
km 6= 0. So

km.a
m = −km+1.a

m+1 − km+2.a
m+2 − · · · − knan.

Now km is invertible in K, and L is an integral domain. This yield

1 = a.(−km+1

km
− −km+2

km
.a− · · · − kn

km
an−m−1).

So a is invertible in L, and this holds for any a ∈ L with a 6= 0. So L is a field.

Proposition 2.16. Let K be a field and P ∈ K[X] be a non-constant irreducible polyno-
mial of degree n. Then L := K[X]/ < P > is a field, and it is an extension of K in which
P has a root.

Proof. Note first that the result is obvious if the degree of P is 1: in this case P has a
root in K. Denote by X̄ the class of the polynomial X modulo < P >. By Proposition
2.14, L is an integral domain. Furthermore, L is spanned by X̄ over K, and in L, we have
that P (X̄) = P (X)/ < P >= 0. So X̄ is algebraic over K, and the integral domain L
is a finite dimensional K-vector space, spanned by 1, X̄, X̄2, · · · , X̄n−1. By Proposition
2.15, the integral domain L is a field. So L/K is a field extension which contains a root
of P .
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2.2 Polynomials 2 INTRODUCTION

Proposition 2.17. Let K be a field and P ∈ K[X]. Then there is an extension L of K
which is a splitting field of P .

Proof. Fix P ∈ K[X] of degree n. It is enough to show that there is an extension M of K
in which P splits into linear factors (X − x1).(X − x2). · · · .(X − xn). Then the subfield
L of M defined by L := K(x1, · · · , xn) is a splitting field of P .
The existence of such a field M will be proved by induction on the degree n of P , and for
all fields at the same time. If P splits into linear factor in K, then take M = K. If not,
let P1 ∈ K[X] be any irreducible factor of P , and let M1 be an extension of K containing
a root α1 of P1. Let Q1 be a polynomial of M1[X] such that P = (X −α1).Q1. So Q1 has
degree n− 1, and by the induction hypothesis, there is an extension M of M1 in which Q1

splits into linear factors. It is clear that P splits in M into linear factors.

Another basic fact about a polynomial rings, and any other PID, is that it is a unique
factorization domain. This means that every element can be represented as a product of
irreducible elements, and this representation is unique up to units and permutations of
the terms.

Proposition 2.18. Let P ∈ K[X] be a non-zero polynomial and let a be an element of
K. Then a is a root of P if and only if X − a divides P .

Proof. Clear by the division algorithm.

Proposition 2.19. Let P ∈ K[X] be a non-zero polynomial. Then the number of roots
of P in any extension of K is less than or equal to the degree of P .

Proof. Let L be an extension of K, and consider P as an element of L[X]. The proof is
done by induction on the degree of P . If this degree is 1, or P has no roots in L, then the
statement is clear. Suppose the statement is proved for polynomials of degree n, and let
P ∈ L[X] with deg(P ) = n+ 1. Let a ∈ L be a root of P . By the preceding lemma, there
is a polynomial Q ∈ L[X] such that

P (X) = (X − a).Q(X).

Now since L is an integral domain, any root of P (X) is a root of X − a or Q(X). The
polynomial X − a has one root, namely a, and Q has at most n roots by the induction
hypothesis and the fact that deg(Q) = n, so P has at most n+ 1 roots.

2.2.2 Derivatives and multiple roots

The derivative of polynomials is defined in the usual way. For

P =

n∑
i=0

aiX
i ∈ K[X],

the derivative ∂P of P is the polynomial

∂P =
n−1∑
i=0

i.aiX
i−1 ∈ K[X].

11



2.2 Polynomials 2 INTRODUCTION

A simple fact about derivatives is the following identity for any two polynomials P and
Q:

∂(PQ) = P.∂Q+Q.∂P

Now let P ∈ K[X]. Suppose that in some extension L of K the polynomial P has a
multiple root a. Then in there is a polynomial Q ∈ L[X] such that P = (X − a)2.Q, and
we have the following identity in L[X]:

∂P = (X − a)2.∂Q+ 2(X − a).Q = (X − a).((X − a).∂Q+ 2.Q)

So ∂P (a) = 0, and in L, P and ∂P are not relatively prime, as both are divisible X − a.
By Proposition 2.13, P and ∂P are not relatively prime in K[X]. Conversely, if a is not
a multiple root of P , so we can write P as a product (X − a).Q where Q(a) 6= 0. Then
∂(P )(a) = Q(a) 6= 0, and P, ∂P have no common roots in any extension of K, they are
then relatively prime. We have then the following:

Proposition 2.20. Let K be a field and P ∈ K[X]. Then P has a multiple root in some
(or any) extension of K if and only if gcd(P, ∂P ) 6= 1. Furthermore, the multiple roots of
a polynomial P are exactly the common roots to P and ∂P .

Example. In characteristic 5, the polynomial P = X5 − 25 = (X − 2)5 has all its roots
equal to 2. The derivative ∂P of P is obviously 0, so gcd(P, ∂P ) = P .

Proposition 2.21. Let K be any field and P be an irreducible polynomial over K. Then
P has a multiple root in some (or any) extension of K if and only ∂P = 0. In particular,
if char(K) = 0 then all the roots of P are simple.

Proof. If ∂P = 0, then gcd(P, ∂P ) = P 6= 1, so by Proposition 2.20, all the roots of P
are multiple roots. Now if ∂P 6= 0, the gcd(P, ∂P ) is not P for degree reasons. So by the
irreducibility of P , gcd(P, ∂P ) = 1. Hence all the roots of P are simple by Proposition 2.20.
As for the rest, note that in characteristic 0, the derivative of a nonconstant polynomial
is never 0.

2.2.3 Irreducibility criteria

Definition 2.22. Let P ∈ Z[X]. We define the content c(P ) of P as the greatest common
divisor of the coefficients of P .

If P ∈ Z[X] \ {0} and a ∈ Z, then c(a.P ) = a.c(P ). For any P ∈ Q[X] \ {0}, then
there is n ∈ N such that n.P ∈ Z[X]. If n1 = c(n.P ), then n.P = n1.P1 and c(P1) = 1.

Proposition 2.23. (Gauss) Let P,Q be two non-zero polynomials of Z[X]. Then

c(P.Q) = c(P ).c(Q).

Proof. Dividing P and Q by c(P ) and c(Q) respectively, it is then sufficient to show that
if P,Q are such that c(P ) = c(Q) = 1, then c(P.Q) = 1. Suppose for a contradiction that
c(P ) = c(Q) = 1, and c(P.Q) 6= 1. Let p ∈ N be a prime number dividing all the coefficients
of P.Q. Then in Z/p[X], the polynomial P.Q = 0. But Z/p[X] is an integral domain, so
in Z/p[X], P = 0 or Q = 0. So c(P ) or c(Q) is divisible by p. Contradiction.

Proposition 2.24. (Gauss) Let P ∈ Z[X] be a polynomial, and suppose that c(P ) = 1.
Then P is irreducible in Q[X] if and only if P is irreducible in Z[X].

12
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Proof. One direction is clear. Suppose now that P is irreducible in Z[X]. For a con-
tradiction, suppose that we can find polynomials S, T ∈ Q[X] such that P = S.T . Let
s, s1, t, t1 ∈ N be such that s.S = s1.S1 and t.T = t1.T1, where S1, T1 ∈ Z[X] and
c(S1) = c(T1) = 1. So stP = s1t1S1T1, and by the above proposition and the fact that
c(P ) = c(S1) = c(T1) = 1, it follows that P = S1.T1. This contradicts the fact that P is
irreducible in Z[X].

Proposition 2.25. (Eisenstein’s criterion) Let P = anX
n + · · ·+ a0 ∈ Z[X]. If there is

a prime number p such that p divides all the ai except an, and p2 does not divide a0, then
P is irreducible in Q[X].

Proof. It is enough to show the irreducibility in Z[X] in the case where c(P ) = 1. Suppose
that P satisfies all the above conditions, and for a contradiction, let S, T ∈ Z[X] be such
that P = S.T . Write S = aXn + S1 and T = bXm + T1, where aXn and bXm are
the leading terms of S and T respectively. Reduce P = S.T modulo p. Since an is not
divisible by p and all the other coefficients are, and by the fact that Z/p.Z is an integral
domain, it follows that S1 and T1 are 0 modulo p. So the constant terms of both S1 and
T1 are divisible by p. But the constant term of P is not divisible by p2, and we have a
contradiction.

13



3 SYMMETRIC FUNCTIONS

3 Symmetric functions

Notation: For a nonzero natural number n, we denote by Sn the symmetric group on
the set {1, 2, · · · , n}, that is the group of permutations of {1, 2, · · · , n}.

Definition 3.1. Let K be a field, x1, · · · , xn be n distinct indeterminates. Let K[x1, · · · ,
xn] be the ring of polynomials over K in x1, · · · , xn, and K(x1, · · · , xn) be the field of
rational functions over K in x1, · · · , xn.

1. A polynomial P ∈ K[x1 · · · , xn] is said to be symmetric if it remains unchanged
when its variables are permuted, i.e.

∀σ ∈ Sn : P (xσ(1) · · · , xσ(n)) = P (x1 · · · , xn)

2. A rational function f ∈ K(x1 · · · , xn) is said to be symmetric if it remains unchanged
when its variables are permuted, i.e.

∀σ ∈ Sn : f(xσ(1) · · · , xσ(n)) = f(x1 · · · , xn).

The following polynomials of K[x1 · · · , xn] are symmetric:

s1 =
∑
i≤n

xi = x1 + x2 + · · ·+ xn

s2 =
∑
i<j≤n

xi.xj

s3 =
∑

i<j<k≤n
xi.xj .xk

· · ·
sn = x1.x2. · · · .xn

These polynomials are called the elementary symmetric polynomials.

Remark 3.2. Let X be a new indeterminate. Then the following polynomial identity
holds:

(X − x1).(X − x2). · · · .(X − xn) = Xn − s1.Xn−1 + s2.X
n−2 − s3.Xn−3 + · · ·+ (−1)n.sn.

Example. Let P (X) := X5 − 3X3 +X2 − 2X + 1, and let a1, · · · , a5 be the roots of P .
Then the sum of the ai is 0, the product of the ai is −1, and the sum of the ai.aj for i < j
is −3.

It is clear that any polynomial or rational function in the elementary symmetric poly-
nomials is symmetric. The fundamental theorems of symmetric polynomials and functions
claim that the converse to these facts also holds.

Theorem 3.3. Let p ∈ K[x1, · · · , xn] be a symmetric polynomial in the indeterminates
x1, · · · , xn. Then p can be expressed as a polynomial in s1, · · · , sn.

14



3 SYMMETRIC FUNCTIONS

Proof. We define an ordering on monic monomials in the xi by setting

xi11 .x
i2
2 . · · · .x

in
n > xj11 .x

j2
2 . · · · .x

jn
n

if either
i1 + · · ·+ in > j1 + · · ·+ jn

or the equality holds and for some m ≤ n,

i1 = j1, i2 = j2, · · · , im−1 = jm−1 but im > jm.

We define a norm function ν from K[x1, · · · , xn] to the set of monic polynomials of
K[x1, · · · , xn], by defining the image of a polynomial f as being the highest monomial
occurring in f (we ignore its coefficient).

Set ν(p) = xk11 .x
k2
2 . · · · .xknn , and let c(p) ∈ K∗ be the coefficient of ν(p) in p. Since p is

symmetric, then the monomials obtained from ν(p) by permuting the xi occur in p as well.
Thus k1 ≥ k2 ≥ · · · ≥ kn.

The norm of the symmetric polynomial sm is x1x2 · · ·xm. So the norm of the symmetric
polynomial

sa11 s
a2
2 · · · s

an
n

is
xa1+···+an1 xa2+···+an2 · · ·xann .

Let
p1 := p− c(p)sk1−k21 sk2−k32 sk3−k43 · · · skn−1−kn

n−1 sknn .

We see easily that ν(p1) < ν(p). We repeat this process with p1, and by Exercise 3.4, after
a finite number of steps we have an expression of p as a polynomial in s1, · · · , sn.

Exercise 3.4. An ordered set (X,≤) is said to be well-ordered if every strictly decreasing
sequence of elements of X is finite. Equivalently, the set (X,≤) is well-ordered if every
non-empty subset of X has a least element. Show that ordering defined in the above proof
on the monic monomials is a well-ordering.

Theorem 3.5. Let f ∈ K(x1, · · · , xn) be a symmetric rational function in the indetermi-
nates x1, · · · , xn. Then f can be expressed as a rational function in s1, · · · , sn.

Proof. Let f ∈ K(x1, · · · , xn) be symmetric, and let p, q ∈ K[x1, · · · , xn] be such that
f = p/q. Let r :=

∏
σ∈Sn σq. The polynomial r is symmetric, and f is a symmetric rational

function, hence the polynomial f.r is symmetric. So both f.r and r lie in K[s1, · · · , sn].
Hence their quotient f = f.r/r lies in K(s1, · · · , sn).

Theorem 3.6. Let f ∈ K(x1, · · · , xn) be a rational function in the indeterminates x1, · · · ,
xn. Suppose that f has exactly m different images when its variables are permuted. Then
f is a root of a polynomial P ∈ K(s1, · · · , sn)[X] of degree m.

Proof. Let f1 = f, f2, · · · , fm be the different images of f when the variables are permuted.
Let P (X) :=

∏
1≤i≤m(X−fi). The polynomial P has degree m, and it remains unchanged

when the xi are permuted. So the coefficients of P are symmetric functions in the xi, and
by Theorem 3.5, they lie in K(s1, · · · , sn). So P ∈ K(s1, · · · , sn)[X].

15
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Let f be as above, and denote by Fix(f) the subgroup of permutations of Sn fixing
f . It is clear that Fix(f) is a normal subgroup of Sn, and that f has the same image
under any two permutations of the same coset of Fix(f). Furthermore, the number of
these cosets is the cardinality of the quotient Sn/F ix(f). This together with Theorem 3.6
yields the following

Theorem 3.7. Let f ∈ K(x1, · · · , xn) be a rational function in the indeterminates x1, · · · ,
xn, and let Fix(f) be the subgroup of permutations of Sn fixing f . Then f is a root of a
polynomial P ∈ K(s1, · · · , sn)[X] of degree |Sn/F ix(f)|.

Example. Discriminant

16



4 POLYNOMIAL EQUATIONS OF DEGREE 3 AND 4

4 Polynomial equations of degree 3 and 4

Remark 4.1. Let K be a field, n 6= char(K) and

P = anX
n + an−1X

n−1 + · · ·+ a0 ∈ K[X].

If we substitute the variable X by

Y − an−1
nan

,

we get a polynomial Q(Y ) with the same degree as P , and in which the coefficient of Y n−1

is 0. Furthermore, if we know the roots of Q, it is easy to find those of P . So for the purpose
of finding a general formula for expressing the roots of polynomials of a certain degree, we
will restrict ourselves to polynomials of the form P = anX

n + an−1X
n−1 + · · ·+ a0 where

an−1 = 0 (and an = 1).

For this section, we fix a field K with char(K) 6= 2, 3.

4.1 Equations of degree 3

The problem of solving polynomial equations of degree three will be reduced to solve
equations of degree two. To this end, we will use the ideas of the previous section - see
Theorem 3.6- and introduce an adequate rational function of the roots of the polynomial
we want to solve, to find a solution“by steps”. We shall follow a method introduced by
Lagrange in his book “Refléxions sur la résolution algébrique des équations” (1770).

Let K be a field with char(K) 6= 2, 3, and let P (X) = X3 + pX + q ∈ K[X]. Suppose
that p, q 6= 0. Let L be an extension of K containing the primitive third roots of unity
( i.e. roots of the polynomial X2 + X + 1), and the roots a, b, c of P . We will show in
the subsequent that such a field L always exists. Note that the roots of X2 + X + 1 are
the inverses of each other, so they are also the squares of each other. We denote them by

j := −1
2 +

√
−3
2 and j2 := −1

2 −
√
−3
2 , where

√
−3 denotes one of the square roots of −3.

Denote by K1 the field generated over K by j and j2. So

K1 = K(
√
−3).

Let x1 = a+ jb+ j2c and x2 := a+ j2b+ jc. Note that

x1.x2 = a2 + b2 + c2 − (ab+ ac+ bc) = −3(ab+ ac+ bc) = −3p.

The function x1 = a + jb + j2c considered as a polynomial function in the free variables
a, b, c, takes six different values when a, b, c are permuted. Those values are x1, jx1, j

2x1,
x2, jx2, j

2x2. Now if instead of x1 we consider the function y1 := x31, the number of values
drops to two when a, b, c are permuted: x31 = y1 and x32 =: y2. By Theorem 3.6, y1 and y2
are roots of a polynomial of degree 2 with coefficients in K1[X]. The discriminant of this
polynomial is

d := (y1 + y2)
2 − 4y1y2.

So y1, y2 ∈ K1(
√
d), where

√
d denotes one of the square roots of d. Let

K2 := K1(
√
d).

17



4.1 Equations of degree 3 4 POLYNOMIAL EQUATIONS OF DEGREE 3 AND 4

So y1, y2 ∈ K2. Denote by 3
√
y1 one of the cubic roots of y1, and note that K2 contains all

the cubic roots of unity. Then x1 is in the field K3 defined by

K3 := K2( 3
√
y1) = K(

√
−3,
√
d, 3
√
y1).

We saw that x1.x2 = −3p, so x2 is in K3 as well. The field K3 contains the roots a, b, c of
P (X), since those are, in K3, the solutions of the linear system

a+ b+ c = 0

a+ bj + cj2 = x1

a+ bj2 + cj = x2.

We showed that there is a tower of subfields of L:

K ⊂ K(
√
−3) ⊂ K(

√
−3,
√
d) ⊂ K(

√
−3,
√
d, 3
√
y1)

such that every subfield is generated over the previous one by some nroot. This means
that every cubic equation is solvable.

Remark 4.2. This does not work in characteristic 2, as in this case the formula giving
the roots of quadratic equations does not work. Neither does this work in characteristic
3. In this case j = j2 = 1, so the above linear system is dependent

Now we calculate explicitly the roots of P (X) = X3+pX+q. We calculate first x31 and
x32. We have already showed x31 + x32 and x31.x

3
1 are elements of K. Let us calculate their

values explicitly. We showed above that x1.x2 = −3p. Using that 1+j+j2 = a+b+c = 0,
and the fact that a is a root of X3 + pX + q, we have the following:

x31.x
3
2 = (−3p)3 = −27p3

x31 + x32 = (x1 + x2)
3 − 3.(x1.x2)(x1 + x2)

= (2a− b− c)3 + 9p(2a− b− c)
= (3a)3 + 27pa

= 27(a3 + pa)

= −27q

Therefore, x31 and x32 are the roots of the polynomial

X2 + 27qX − 27p3.

Let
d = 27(4p3 + 27q2)

be the discriminant of this polynomial, and denote by
√

4p3 + 27q2 one of the square
roots of 4p3 + 27q2. Now we have

x31 =
−27q +

√
27
√

4p3 + 27q2

2

and

x32 =
−27q −

√
27
√

4p3 + 27q2

2

18



4.1 Equations of degree 3 4 POLYNOMIAL EQUATIONS OF DEGREE 3 AND 4

Denote by
3

√
−27q+

√
27
√

4p3+27q2

2 any cubic root of the first expression. Call α this

cubic root. Denote by
3

√
−27q−

√
27
√

4p3+27q2

2 the cubic root of the second expression which

is equal to −3p
α . If we choose for x1 the value α, so x2 = −3p

α . Now we have the system

a+ b+ c = 0

a+ bj + cj2 = α

a+ bj2 + cj = −3p

α
.

The roots a, b, c of P are thus

1

3
(α− 3p

α
) =

1

3

(
3

√
−27q +

√
27
√

4p3 + 27q2

2
+

3

√
−27q −

√
27
√

4p3 + 27q2

2

)

1

3
(j2α− j 3p

α
) =

1

3

(
j2

3

√
−27q +

√
27
√

4p3 + 27q2

2
+ j

3

√
−27q −

√
27
√

4p3 + 27q2

2

)

1

3
(jα− j2 3p

α
) =

1

3

(
j

3

√
−27q +

√
27
√

4p3 + 27q2

2
+ j2

3

√
−27q −

√
27
√

4p3 + 27q2

2

)
.

These are known as the “Cardano formulas”, named after Gerolamo Cardano(1501-1576).

4.1.1 Some remarks on the cubic equations with real coefficients

Let K be a subfield of R and P = X3 + pX + q be a cubic polynomial of K[X]. The
polynomial P has either one or three real roots. If P has exactly one real root, then the
two non-real roots are conjugates. Using the fact that a is a root of P , a+ b+ c = 0 and
a.b.c = −q, we have:

(b− c)2 = (b+ c)2 − 4bc = −p+
3q

a
.

The polynomial P has a multiple root in C if and only if, without loss of generality,
(b− c) = 0, so 3q

p is a root of P , thus 4p3 + 27q2 = 0.

Suppose first that 4p3 + 27q2 > 0, so α can be chosen to be real, and looking at the
Cardano formulas one sees easily that P has two non real roots and one real root.

Now if 4p3 + 27q2 < 0, then x31 and x32 are complex conjugates, as those are the roots of
a polynomial of degree two with real coefficients, and it is easy to check that α and −3p

α
are complex conjugates as well. From this fact it follows easily that all the roots of P are
real.

This may sound a bit paradoxical: the roots of P are all real if and only if the square root√
4p3 + 27q2 appearing in the expression of the roots is imaginary. We will show in fact

that if P is irreducible and has three real roots, then one can not avoid imaginary roots in
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the expression with radicals of the roots of P . More precisely, we show in this case that
there is no tower of subfields of R

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn ⊂ R

such that, for any 0 < i ≤ n, Ki is generated by some n
√
ai over Ki−1, for some ai ∈ Ki−1

and n ∈ N∗, and Kn contains all the (real) roots of P .

4.1.2 Historical notes

At the times of the Cardano discovery, there were neither complex numbers, nor negative
numbers. So the radicals appearing in the cardano formulas were to be interpreted as
positive real numbers: the edge length of a cube with a given volume, or the edge length
of a square with a given surface. There was thus one Cardano formula, and not three of
them. And this Cardano formula baffled the mathematicians of the 16th century, starting
by Cardano himself. Trying to solve an equation like X3 = 15X + 4, which admits
obviously 4 as a solution, the Cardano formula yields a strange expression:

3

√
2 +
√
−121 +

3

√
2−
√
−121.

The validity of the Cardano formula in this case remained contentious for a long time.
But soon, Cardano came to realize that, even in this case, his formula holds some truth if
one doesn’t try systematically to give a geometric interpretation for the emerging square
and cubic roots. So in his calculation, he started treating the square and cubic roots in
formal way. Thus

√
a is a number (possibly an impossible number according to the new

terminology of Cardano, when a < 0) whose square is a. A simple calculation shows then
that

(2 +
√
−1)3 = 2 +

√
−121 and (2−

√
−1)3 = 2−

√
−121.

So the solution given by the Cardano formula to the equation X3 = 15X + 4 is just

(2 +
√
−1) + (2−

√
−1) = 4,

as expected. And this is exactly how the complex numbers appeared in mathematics: it
was an attempt from Cardano and his students to understand the scope of validity of the
Cardano Formula.

Another new fact arising from the Cardano formula, was the discovery that some cubic
equations can have two, or even three solutions. One should yet note the following. Given
three numbers a, b, c one can easily construct a polynomial P (X) of degree 3 having a, b, c
as roots: take P = (X − a).(X − b).(X − c). Furthermore, it follows easily by the Euclid
algorithm (for polynomials !) that a, b and c are the unique roots of P (X). Well, this
argument was not that clear for Cardano. The equations were interpreted geometrically,
and written literally, with words. So X3 was the volume of some cube, and X2 was
the surface of the side of the same cube, the coefficient of X2 was some length, and
the coefficient of X was a surface, etc.. Moreover, there were no negative numbers. So
the terms with negative coefficients were to be taken to the other side of the equation.
All this to say, that at that time, a very important mathematical object was missing:
the polynomial. So Cardano had no polynomials, and of course, he couldn’t multiply
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polynomials, (since he didn’t have any...). So our simple argument for finding P as the
product of X−a, X−b and X−c was not as obvious as that at that time, and the discovery
that some cubic equations have three roots was rather surprising. This led Cardano to the
conjecture that every cubic equation has three roots, if one counts the impossible solutions.
In the subsequent years, this conjecture was generalized to equations of degree n, and was
even used as fact for a long time, until Gauss provided a proof for it as he proved the
fundamental theorem of algebra.

4.2 Equations of degree 4

The solution of quartic equations was found soon after that of the cubic by a student of
Cardano named Ludovico Ferrari (1522-1565). Nevertheless, this discovery arose much less
interest than that of Cardano. And one of the reasons for this, is that quartic equations
do not have an obvious geometric interpretation.

There was a good reason for which the algebraic questions which interested mathe-
maticians were only those having a geometrical interpretation. Pythagoras taught that
the world can be explained with numbers, and here we mean natural numbers. He said
that in geometry for example, for an adequate choice of the unit, every measure will be a
natural number. Some decades after the death of Pythagoras, one of his followers Hippa-
sus of Metapontum, showed that if the edge length of a square is a number, then it is not
the case for the diagonal. Which comes to the same as saying that

√
2 is not a rational

number. Hippasus paid his discovery with his life, drowned allegedly at see for producing
a counterexample to the Pythagoras’ doctrine that “all things are numbers”.

After the death of Hippasus,
√

2 kept being irrational, and a generalization of the
notion of number beyond rationals was needed in order to deal in a coherent way with
numbers arising from geometry. The obvious generalization is by defining numbers as
distances between two points. So if x is a distance between two points, x2 is a surface,
and x3 is a volume. As for x4, it has no place in Greek algebra.

Now we come back to our quartic equations. By the usual translation, solving a
polynomial equation of degree 4 comes to the same as solving an equation of the form

X4 + aX2 + bX + c

where a, b, c are elements of some field K with char(K) 6= 2, 3. Denote by x1, x2, x3, x4
the roots of the above equation. As for the cubic equations, the idea is to find a rational
function f(x1, x2, x3, x4) taking ”few” distinct values when the xi are permuted. ”Few”
does not mean 1. In this case f is symmetric and considering such an f will not be helpful.

Let’s have a look at the structure of S4, the group of permutations of the set {1, 2, 3, 4}.
This group has 24 elements, four of which keep {1, 2} and {3, 4} invariant, and another
four sending {1, 2} to {3, 4}. These eight permutations form a subgroup H of S4. Let

f(x1, x2, x3, x4) := x1x2 + x3x4.

It is clear that the subgroup of S4 fixing f (as a rational function in the free variables
x1, x2, x3, x4) is H. So H is a normal subgroup of S4 ( this fact is not really needed for
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the argument). Now H has 8 elements, S4 has 24, and 24/8 = 3. So by Theorem 3.7,
x1x2 + x3x4 is a root of a polynomial of degree 3 over K, namely the polynomial

(X − (x1x2 + x3x4))(X − (x1x3 + x2x4))(X − (x1x4 + x2x3))

Fix the following notation:

α := x1x2 + x3x4, β := x1x3 + x2x4, γ := x1x4 + x2x3.

Computing the elementary symmetric functions of α, β and γ, we have:

α+ β + γ = a

αβ + βγ + αγ = (
∑

xi)(
∑
i<j<k

xixjxk)− 4x1x2x3x4 = −4c

αβγ = x1x2x3x4(
∑

xi)
2 + (

∑
i<j<k

xixjxk)
2 − 4x1x2x3x4

∑
i<j

xixj = b2 − 4ac.

So α, β and γ are the three roots of the polynomial

X3 − aX2 − 4cX + 4ac− b2.

By the results of the last section, α, β and γ have algebraic expressions in the coefficients,
so in a, b and c, and they are contained in some extension by radicals of the field K.

We show now that the roots x1, x2, x3 and x4 have algebraic expressions in α, β and γ.
x1 + x3 takes exactly two distinct values under the permutations fixing α and β, so it
should be the root of a polynomial of degree two on K(α, β), the other root being x2 +x4.
And indeed, we have:

(x1 + x3).(x2 + x4) = α+ β,

(x1 + x3) + (x2 + x4) = 0

Denote by
√
−α− β a square root of −α− β. Now we have

x1 + x3 =
√
−α− β,

x2 + x4 = −
√
−α− β

Note that −α− β = γ − a. With the same calculation, we have

x1 + x3 =
√
γ − a,

x2 + x4 = −
√
γ − a,

x1 + x4 =
√
β − a,

x2 + x3 = −
√
β − a,

x1 + x2 =
√
α− a,

x3 + x4 = −
√
α− a.

(The square roots are not fixed independently of each other.) The expressions of the
xi follow directly:
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2x1 =
√
γ − a+

√
β − a+

√
α− a,

2x2 = −
√
γ − a−

√
β − a+

√
α− a,

2x3 =
√
γ − a−

√
β − a−

√
α− a,

2x4 = −
√
γ − a+

√
β − a−

√
α− a.

This shows that every equation of degree 4 is solvable by radicals.

4.3 And for 5?

We reduced the equations of degree three to equations of degree two, and those of degree
four to ones of degree three. In each case, we were able to find a function f of the roots
taking the “good number” of distinct values when the roots xi of the polynomial are
permuted. Equivalently, the the group Fix(f) had the “good order”.

For the polynomials of degree 3 on a fieldK, we defined f as (x1+jx2+j2x3)
3. Fix(f) ⊂ S3

has order 3, and f takes two distinct values when the xi are permuted. So f is the root
of a polynomial of degree 2 of K.

For the polynomials of degree 4 on a field K, we defined f as x1x2 + x3x4. Fix(f) ⊂ S4
has order 8, and f takes three distinct values when the xi are permuted. So f is the root
of a polynomial of degree 3 of K.

From n = 5, Cauchy proved that this “does not work anymore”. He showed that if n is
prime, then any function f of the roots takes either more than n values (and this doesn’t
help, since f is then a root of a polynomial with degree greater than n), or one or two
values (and this is not very helpful neither). So in the language of groups, he showed that
if n is a prime number, and H a subgroup of Sn with index ≤ n− 1, then H has index 1
or 2.

To see this, we show first that all the cycles of length n are in H. So let σ be such a cycle.
The cosets H,Hσ,Hσ2, · · · , Hσn−1 cannot be all disjoint from each other since the index
of H is at most n− 1. So for some i < j < n, σj−i is an element of H. But σj−i generates
a non trivial subgroup of the subgroup generated by σ, which has prime order n. So σj−i

and σ generate the same subgroup of Sn, and σ ∈ H.

Now we show that An is a subgroup of H by checking that every 3-cycle is in H. And
indeed:

(1, 2, 3, 4, · · · , n− 1, n)(n, n− 1, · · · , 4, 2, 3, 1) = (2, 4, 3).

So An is a subgroup of H and thus H has index 1 or 2.

Now we have a look at the field extensions of the form K(f)/K where f takes one or
two values. One of those functions taking exactly two distinct values when the xi are
permuted, is the function

d :=
∏

i<j≤n
(xi − xj).
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The function d is in fact a square root of the discriminant of the polynomial. Now let f be
any function of the roots. If f takes one value then f is symmetric, so f ∈ K and K(f) =
K. And if f takes exactly two values, say f1 = f and f2 then Fix(f) = Fix(d) = An.
The functions f1 + f2 and d(f1 − f2) are then symmetric, so they are in K. So f ∈ K(d)
and K(f) = K(d).

24



5 ALGEBRAIC EXTENSIONS

5 Algebraic extensions

5.1 Algebraic elements

Definition 5.1. Let L/K be a field extension, and let a be an element of L. Then a is
said to be algebraic over K if there is a nonzero polynomial P (X) ∈ K[X] such that
P (a) = 0. If a is not algebraic over K, then a is said to be transcendental over K.

Examples:
√

2,
√

2 + 1, e
2iπ
n with n ∈ N, are algebraic over Q. If L/K is a field

extension, then every a ∈ K is algebraic over K. If K is a field and X a free variable, then
in the field extension K(X)/K, the element X is transcendental over K. In fact, every
element of K(X) \K is transcendental over K.

Remark 5.2. In the field extension R/Q, there are countably many algebraic numbers
over Q since there are countably many polynomials with coefficients in Q. On the other
hand R is uncountable. Therefore there are uncountably many elements of R which are
transcendental over Q.

Exercise 5.3. (Liouville’s Theorem-1844) For every sequence (an)n∈N of natural numbers
between 1 and 9, the number

∑
n≥0

an.10−n! is transcendental over Q (Hint: show that if a

is a root of an irreducible polynomial P ∈ Z[X] of degree n > 1, then there is constant
c > 0 such that for any p

q ∈ Q with q > 0, we have |a− p
q | ≥

c
qn ).

Proposition 5.4. Let L/K be a field extension, and a ∈ L be algebraic over K. Then
there is a unique polynomial P ∈ K[X] with leading coefficient 1 and least degree among
all polynomials in K[X] having a as a root.

Proof. Let Q ∈ K[X] be a nonzero polynomial least degree such that Q(a) = 0, and let
α 6= 0 be the leading coefficient of Q. Let P := Q/α. So P is a polynomial in K[X] with
leading coefficient 1, and least degree among all polynomials in K[X] having a as a root.
If there is another R ∈ K[X] with these properties, take S := P − R. So S is a nonzero
polynomial in K[X] with S(a) = 0, and the degree of S is strictly smaller than that of P .
This contradicts the definition of P .

Definition 5.5. Let L/K be a field extension, and a ∈ L be algebraic over K. The
minimal polynomial of a over K is the unique polynomial P ∈ K[X] with leading
coefficient 1 and least degree among all polynomials in K[X] having a as a root.

Examples In the extension R/Q, X2−2 is the minimal polynomial of
√

2, and X3−2
is the minimal polynomial of 3

√
2.

Proposition 5.6. Let L/K be a field extension, a ∈ L be algebraic over K and P be the
minimal polynomial of a over K. Then we have the following:

1. P is not a constant polynomial.

2. Let Q ∈ K[X] be such that Q(a) = 0. Then Q is divisible by P .

3. P is irreducible in K[X].

4. Every other root of P admits P as its minimal polynomial.
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5. If K has characteristic 0, then a is a simple root of P .

Proof. 1. The polynomial P has a root in K. So if it is constant, it has to be identically
zero. This contradicts the definition of the minimal polynomial.

2. Let R,S ∈ K[X] be such that Q = R.P + S, with deg(S) < deg(P ). Since P (a) =
Q(a) = 0, then S(a) = 0. So S is identically 0 by minimality of deg(P ).

3. Immediate by the fact that a field is an integral domain.

4. The element b is a root of P , so b is algebraic over K and has a minimal polynomial
Q, and P is divisible by Q by (1). But P is irreducible, and both P and Q have
leading coefficient 1, so P = Q and P is the minimal polynomial of b.

5. This is a direct consequence of Proposition 2.21 and the irreducibility of P .

Corollary 5.7. Let x ∈ K be algebraic over k, and let P ∈ k[X] be the minimal polynomial
of x over k. Let x′ be another root of P . Then for Q ∈ k[X], x is a root of Q if and only
if x′ is a root of Q.

Theorem 5.8. Let L/K be a field extension, and a ∈ L. The following are equivalent:

1. a is algebraic over K.

2. K[a] is a field.

3. K[a] = K(a).

4. The extension K(a)/K is finite.

Proof. It is clear that 2 and 3 are equivalent.

1⇒3 : Suppose that a is algebraic over K and let P = Xn + an−1.X
n−1 + · · · + a0 be

the minimal polynomial of a over K. The identity P (a) = 0 shows that an is a linear
combination of the monomials 1, a, · · · , an−1. By induction, it is easy to see for any
m ≥ n, that am is a linear combination of the monomials 1, a, · · · , an−1. So the ring k[a]
is a finite dimensional vector space over K, generated by 1, a, · · · , an−1. By Proposition
2.15, the ring k[a] is a field and k[a] = k(a).

3⇒4 : Suppose that K[a] = K(a). So a−1 is a K-linear combination of 1, a, · · · , an−1 for
some n, say

a−1 = k1 + k2.a+ · · ·+ kn.a
n−1.

We can moreover suppose that kn 6= 0. Multiplying by a on both sides we have

1 = k1.a+ k2.a
2 + · · ·+ kn.a

n.

So

an =
1

kn
− k1
kn
.a− k2

kn
a2 − kn−1

kn
.an−1.

This shows that an is a K-linear combination of 1, a, a2, · · · , an−1, and by induction it
is clear that the same holds for any m ≥ n. Thus the ring K[a] is a finite dimensional
K-vector space. But K[a] = K(a), so K(a)/K is finite.
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4⇒1 : If the extension K(a)/K is finite, then 1, a, · · · , ai, · · · are K-linearly dependent.
Any non-trivial K-linear combination of the ai yields a polynomial P ∈ K[X] with P (a) =
0.

Corollary 5.9. Let L/K be a field extension, and let a ∈ L be algebraic over K. Then
the degree of the extension K(a)/K is equal to the degree of the minimal polynomial of a
over K.

Proof. If n is the degree of the minimal polynomial of a over K, we have seen above that
for any m ∈ N, am is a linear combination of elements of the set S = {1, a, a2, · · · , an−1}.
So S spans the K-vector space K[a] over K, and since K(a) = K[a], S spans the K-vector
space K(a). On the other hand, the set S is independent over K: there is no non-
trivial K-linear combination of 1, a, a2, · · · , an−1 which is 0, that would yield a polynomial
Q ∈ K[X] with degree < n with Q(a) = 0. So S is a basis of K(a) over K, and it has
obviously n elements. So the degree of the extension K(a)/K is n.

Definition 5.10. Let L/K be a field extension. The extension L/K is said to be algebraic
if every element of L is algebraic over K.

Proposition 5.11. Let L/K be a finite field extension. Then L/K is algebraic.

Proof. Let a be any element of L. So K(a) is a K-vector space which is a subvector space
of L. Because the dimension of L over K is finite, the same holds for that of K(a) over
K. Theorem 5.8 yields that a is algebraic over K.

Remark 5.12. The converse of Proposition 5.11 does not hold. The field Qalg of elements
of C which are algebraic over Q has infinite dimension over Q. To see this, let p ∈ N be
any prime number, and n ∈ N∗. Then by Eisenstein’s criterion, the polynomial Xn − p
is irreducible in Q. So the degree of n

√
p over Q is n. This shows that the degree of Qalg

over Q is not bounded, thus infinite.

Proposition 5.13. Let L/K be a field extension, and let a1, · · · , an ∈ L be algebraic over
K. Let p1, · · · , pn be the degrees over K of a1, · · · , an respectively. Then the extension
K(a1, · · · , an)/K is finite, thus algebraic, with degree ≤ p1.p2. · · · .pn.

Proof. Recall first that K(a1, · · · , an) = K(a1)(a2) · · · (an). We prove it by induction. For
n = 1 the result is given by Theorem 5.8. Suppose this is shown for n − 1, and we show
it for n. The element an has degree pn over K, and since dependence over K implies
dependence over K(a1)(a2) · · · (an−1), then an has degree ≤ pn over K(a1)(a2) · · · (an−1).
By the multiplicativity formula for degrees and the induction hypothesis, we have that

[K(a1, · · · , an) : K] = [K(a1, · · · , an) : K(a1, · · · , an−1)].[K(a1, · · · , an−1) : K]

≤ p1.p2. · · · .pn−1.pn.

Corollary 5.14. Let M/L and L/K be two algebraic field extensions. Then M/K is
algebraic.
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Proof. Let a be an element of M of degree n, and let a0, · · · , an−1 be the coefficients
of the minimal polynomial of a over L. Then by the above proposition, the extension
K(a1, · · · , an−1)/K is finite.On the other hand, the extension K(a1, · · · , an−1)(a)/K(a1,
· · · , an−1) is finite. So K(a1, · · · , an−1)(a)/K is finite and a is algebraic over K.

Corollary 5.15. Let L/K be a field extension. Then the set Kalg
L of elements of L which

are algebraic over K is a subfield of L.

Proof. It is clear that 0, 1 ∈ Kalg
L . Let a, b be elements of Kalg

L , with b 6= 0. Then a − b
and a.b−1 are in K(a, b), which is algebraic extension of K. So a− b, a.b−1 ∈ Kalg

L .

Remark 5.16. We have shown that in a field extension L/K, the sum and product of two
algebraic elements a, b are algebraic, and has degree smaller than or equal to the product
of the degrees of a and b. So in the field extension R/Q, the element 3

√
2 + 5
√

3 is a root of
a polynomial of Q[X] with degree ≤ 15.

Exercise 5.17. Let P1, P2 be polynomials in K[X] of degree m1 and m2 respectively.
Denote by x1, · · · , xm1 the roots of P , and by y1, · · · , ym2 those of Q. Let f(x1, y1) be any
rational function of x1 and y1. Define

Θ(X) :=
∏

i≤m1, j≤m2

(X − f(xi, yj)).

Use the fundamental theorem of symmetric functions to show that Θ(X) ∈ K[X]. Gen-
eralize the result to the case of n polynomials. Note that this result gives an explicit
polynomial of degree 15 with rational coefficients having 3

√
2 + 5
√

3 as a root.

5.2 Extending field isomorphisms

Definition 5.18. Let K1,K2 be two fields, and f be an application from K1 to K2. Then
f is a field homomorphism if f(1) = 1 and for any x, y ∈ K1, f(x + y) = f(x) + f(y)
and f(x.y) = f(x).f(y).

Remark 5.19. A field has no nontrivial ideals. So the kernel of field homomorphism f
from K1 to K2 is {0}, and f is injective. Thus f(K1) is a field, and f defines a field
isomorphism between K1 and f(K1).

Definition 5.20. Let L/K and L′/K be two field extensions, and f an application from
L to L′.

1. The application f is a K-homomorphism if f defines a unitary ring homomorphism
between L and L′, and f(x) = x for any x ∈ K. A K-homomorphism from L to L′

is then a homomorphism of K-algebras between L and L′.

2. The application f is said to be a K-isomorphism if it is a bijective K-homomor-
phism.

3. The application f is said to be a K-automorphism if it is a K-isomorphism and
L = L′.

Proposition 5.21. Let L/K be a field extension, a ∈ L be algebraic over K and P be its
minimal polynomial. Denote by X̄ the class of the polynomial X modulo < P >. Then
there is a unique K-isomorphism f from the field K[X]/ < P > to K(a), with f(X̄) = a.
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Proof. Let g be the application from K[X] to K[a], which to a polynomial P [X] associates
the element P (a). It is clear that g is a well defined homomorphism of K-algebras between
K[X] and K[a]. By Proposition 5.6, the kernel of g is < P >. So g factors into an
isomorphism of K-algebras f between K[X]/ < P > and K[a], and f(X̄) = g(X) = a.
Uniqueness is obvious.

Proposition 5.22. Let K1 and K2 be two fields and let σ be a field isomorphism from
K1 to K2. Let P ∈ K1[X] be an irreducible polynomial, and let L1, L2 be extensions of
K1 and K2 respectively, in which P and σP have roots, say α1 and α2. Then σ can be
extended in a unique way to an isomorphism σ′ from K1(α1) to K2(α2), with σ′(α1) = α2.

Proof. Uniqueness is obvious. As for the existence, note first that σ extends to field
isomorphism betweenK1[X]/ < P > and toK2[X]/ < σP >. By Proposition 5.21, K1(α1)
is K1-isomorphic to K1[X]/ < P >, and K2(α2) is K2-isomorphic to K2[X]/ < σP >.
The wanted result follows immediately.

Corollary 5.23. Let K be a field and P ∈ K[X] be irreducible. Let L1, L2 be extensions
of K containing two roots of P , say α and β. Then there is a unique K-isomorphism σ
from K(α) to K(β), with σ(α) = β.

Proof. Follows directly from Proposition 5.22, with K1 = K2 = K and σ = idK .

Proposition 5.24. Let K1,K2 be two fields, and σ be an isomorphism between K1 and
K2. Let P be a polynomial in K1[X] of degree n, and let L1 and L2 be splitting fields of
P and σP over K1 and K2 respectively. Then σ extends to an isomorphism σ′ from L1 to
L2.

Proof. Let k be the number of distinct irreducible factors of P in K1[X]. We prove the
proposition by induction on dK1(P ) := n− k, and for all the fields at the same time.

If dK1(P ) = 0, then P splits into linear factors in K1, so L1 = K1, L2 = K2 and there
is nothing to prove.

Suppose that dK1(P ) 6= 0, and let Q ∈ K1[X] be any irreducible factor of P of degree
≥ 2. Let α1 ∈ L1 be any root of Q and α2 ∈ L2 be any root of σQ. By Proposition
5.22, σ extends to an isomorphism τ : K1(α1) → K2(α2). Furthermore, it is clear that
dK1(α1)(P ) < dK1(P ), and that L1, L2 are the splitting fields of P, σP over K1(α1),K2(α2)
respectively. So by the induction hypothesis, τ can be extended to an isomorphisms σ′

from L1 to L2, and it is clear that σ′ extends σ.

Corollary 5.25. Let K be a field, P ∈ K[X] and L be a splitting field of P over K. Let
K1,K2 be two intermediate fields, and σ : K1 7→ K2 be a K-isomorphism. Then σ extends
to a K-automorphism σ′ of L.

Proof. Clear by Proposition 5.24. Take L1 = L2 = L, and note that L is the splitting field
of P over Ki, i = 1, 2.

Theorem 5.26. Let K be a field, and P ∈ K[X]. Then any two splitting fields over K
of the polynomial P are isomorphic.

Proof. Immediate by Proposition 5.24: take K1 = K2 = K and σ = idK .
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Corollary 5.27. Let K be a field, P ∈ K[X] and L be a splitting field of P over K.
Let α, β ∈ L be roots of P having the same minimal polynomial. Then there is a K-
automorphism σ of L, with σ(α) = β.

Proof. The elements α and β have the same minimal polynomial over K, so by corollary
5.23 (where we set L1 = L2 = L), there is a K-isomorphism σ0 : K(α) 7→ K(β) with
σ0(α) = β. By Corollary 5.25, σ0 extends to a K-automorphism σ of L. It is clear that
σ(α) = β.

Remark 5.28. The isomorphism σ of Proposition 5.24 does not always extend in a unique
way. In fact, we will be mainly interested in the case where the extension is not unique: if
P ∈ K[X], and L is a splitting field of P , then the Galois group of P will be exactly the
group of distinct extension of idK to L.

5.2.1 An application: classifying finite fields

A finite field F has obviously a positive characteristic, say p. Furthermore, F is a vector
space of dimension r over its prime field, which has p elements, so the cardinality of F is
of the form pr for some r ∈ N \ {0}. We show now that for every prime number p and
every r ∈ N \ {0}, there is exactly one field of cardinality q := pr. We shall later denote
this field by Fq. For r = 1 the result is clear with Fp = Z/p.

So fix p and r, and set q := pr. Let P := Xq −X ∈ Fp[X], and let Fq be a splitting
field of P over Fp. The derivative ∂P of P is −1, so by Proposition 2.20 the roots of P
are all distinct, they form a subset G of Fq of cardinality q. Using the fact that in Fq,
(x+ y)p = xp + yp, one checks easily that G is stable under +, . and taking opposites and
inverses, and it is obvious that 0, 1 ∈ G. The set G is thus a field, so G = Fq and Fq has
exactly q elements. That was for the existence.

As for the unicity, let F be any field having q elements. Note first that char(F ) = p.
Let F ∗ be the multiplicative group of F . So F ∗ has q − 1 elements, and for every a ∈ F ∗
we have aq−1 = 1. It follows that for every a ∈ F , aq − a = 0. So F is a splitting field
over Fp of the polynomial Xq −X. By Theorem 5.26, F is isomorphic to Fq. We proved
the following.

Theorem 5.29. The cardinality of a finite field is a natural number of the form pr, where
p is a prime number, and r ∈ N \ {0}. Furthermore, for every prime p and r ∈ N \ {0},
there is up to isomorphism exactly one field Fpr of cardinality pr. The field Fpr is in fact
the splitting field of the polynomial Xpr −X over Z/p.

5.3 Separable and inseparable extensions

Definition 5.30. Let K be a field.

1. A polynomial P in K[X] is said to be separable if P splits into a product of distinct
linear factors in some (hence any) splitting field for P . A polynomial P is said to be
inseparable if it is not separable.

2. Let L/K be a field extension, and α ∈ L be an algebraic element over K. Then α
is separable over K if its minimal polynomial over K is separable. Otherwise, α is
an inseparable element.
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3. Let L/K be an algebraic extension. Then the extension is said to be separable if
all the elements of L are separable over K.

Remark 5.31. 1. If char(K) = 0, then every algebraic element α over K is separa-
ble: the minimal polynomial of α over K is irreducible, and by Proposition 2.21,
irreducible polynomials have only simple roots in characteristic 0.

2. If char(K) = p > 0, let T be any indeterminate. So the extension K( p
√
T )/K(T ) is

not separable: p
√
T is the root of the polynomial P := Xp − ( p

√
T )p = (X − p

√
T )p ∈

K(T )[X]. So p
√
T is the unique root of P , so it is the unique root of its minimal

polynomial over K(T ), and is clearly not in K(T ). So p
√
T is not separable over

K(T ).

The following is easy.

Lemma 5.32. Let M/K be a separable field extension and L be an intermediate field.
Then the extensions M/L and L/K are separable.

Definition 5.33. A field K is said to be perfect if every irreducible polynomial over K is
separable. Equivalently, a field K is perfect if every algebraic extension of K is separable.

Lemma 5.34. An algebraic extension of a perfect field is perfect.

Proof. Follows directly by the Lemmas 5.14 and 5.32.

Theorem 5.35. A field K is perfect if and only if char(K) = 0, or char(K) = p > 0
and the Frobenius homomorphism x 7→ xp is surjective. In particular, every finite field is
perfect.

Proof. If char(K) = 0, then by Proposition 2.21, an irreducible polynomial over K has
only simple roots. Hence fields of characteristic 0 are perfect.

Now suppose that char(K) = p > 0. If the Frobenius homomorphism is not surjective,
so let a ∈ K \Kp and let L := K( p

√
a). The polynomial P := Xp−a = (X− p

√
a)p ∈ K[X]

is irreducible (exercise) and it admits p
√
a as a multiple root. Hence K is not perfect.

Suppose now that the Frobenius homomorphism is surjective, and let P be any poly-
nomial which is not separable. We show that P is reducible. If it were not the case, then
it follows by Proposition 2.21 that ∂P = 0. So P is of the form

anX
p.n + an−1X

p.(n−1) + · · ·+ a1X
p + a0.

Since the Frobenius is surjective, let for 0 ≤ i ≤ n bi be a pth root of ai. So

P = bpnXp.n + bpn−1X
p.(n−1) + · · ·+ bp1X

p + bp0
= (bnX

n + bn−1X
(n−1) + · · ·+ b1X + b0)

p.

So P is reducible, contradiction.

Theorem 5.36. Let K be a field of characteristic p > 0, and P ∈ K[X] be an irreducible
polynomial. Then all the roots of P have the same multiplicity, this multiplicity is a
number of the form pm for some m ∈ N.
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Proof. Let m be the greatest natural number i such that P is a polynomial in Xpi , and let
Q ∈ K[X] be such that P (X) = Q(Xpm). It is clear that Q is irreducible. By the choice
of m, Q is not a polynomial in Xp, so ∂Q 6= 0 and Q is separable. So in some extension
of K, there are distinct elements a1, · · · , an, and an element c ∈ K such that

Q(X) = c
∏

i=1,··· ,n
(X − ai).

Let b1, · · · , bn be pm
th

roots of a1, · · · , an respectively, in some big extension of K. All the
bi are distinct by injectivity of the Frobenius map. Now we have

P (X) = Q(Xpm) =
∏

i=1,··· ,n
(Xpm − ai) =

∏
i=1,··· ,n

(Xpm − bp
m

i ) =
∏

i=1,··· ,n
(X − bi)p

m
.

The claim follows directly

5.4 Galois extensions

Definition 5.37. A field extension L/K is said to be a normal extension if for every
α ∈ L algebraic over K, the minimal polynomial of α splits in L[X].

Remark 5.38. The above definition is equivalent to: an extension L/K is normal if for
every irreducible polynomial P ∈ K[X], P has one root in L if and only if it has all its
roots in L.

Definition 5.39. 1. Let L/K be a field extension. Then the Galois group Gal(L/K)
of the extension L/K is the group of all K-automorphisms of L.

Gal(L/K) = {σ ∈ Aut(L) : ∀x ∈ K,σ(x) = x}.

Gal(L/K) is also called the Galois group of L over K.

2. Let K be a field and P ∈ K[X]. Then the Galois group of the polynomial P
over K is the galois group the splitting field of P over K.

Remark 5.40. If P ∈ K[X] is separable, then the Galois group of P over K is isomorphic
to a subgroup of the group of permutations of the roots of P .

Definition 5.41. Let L/K be an algebraic extension, and let α be an element of L. Then
the set {σ(α), σ ∈ Gal(L/K)} is the set of Galois conjugates of α in L (over K).

Theorem 5.42. Let K be a field, P ∈ K[X] and L be a splitting field of P over K. Let α
be a root of P . Then the conjugates of α in L over K are the roots the minimal polynomial
of α over K. So in particular, if α is separable, then the number of distinct conjugates of
α is equal to the degree of α over K.

Proof. Let Q be the minimal polynomial of α over K, and let β be a conjugate of α over K.
Let σ ∈ Gal(L/K) be such that σ(α) = β. The coefficients of Q are in K, so they are fixed
under σ. And since σ is a field automorphism, it is easy to check that σ(Q(α)) = Q(σ(α)).
Now we have that

Q(β) = Q(σ(α)) = σ(Q(α)) = σ(0) = 0.
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This shows that any conjugate of α over K is a root of the minimal polynomial of α over
K.

Now let β be any root of Q. The polynomial Q divides P by Proposition 5.6, so β is
also a root of P . Corollary 5.27 applies and yields that β is the image of α by some
K-automorphism σ of L, thus that β is a conjugate of α over K.

For the last part of the theorem, note that the degree of α over K is the degree of the
polynomial Q. So if Q has only simple roots, this is equal to the number of distinct roots
of Q, thus the number of distinct conjugates of α over K.

Exercise 5.43. Determine the Galois groups over Q of the following extensions or poly-
nomials:

1.
⋃
1≤n

Q(
n
√

2) (the nth roots here are real).

2. X6 − 1.

3. X5 +X4 +X3 +X2 +X + 1.

Lemma 5.44. Let M/K be an algebraic extension, and L be an intermediate field. Then
Gal(M/L) is a subgroup of Gal(M/K).

Proof. If f, g are automorphisms of M fixing L pointwise, then f ◦ g and f−1 are auto-
morphisms of M , and they fix L pointwise.

Definition 5.45. Let L be a field and G be a groups of automorphisms of F . Then the
fixed field Fix(G) of G is the field of all the elements of L which are fixed under all the
elements of G.

Fix(G) = {x ∈ L : ∀σ ∈ G, σ(x) = x}.

Remark 5.46. The fixed field is a field. (And the Galois group is a group). Note that
K ⊂ Fix(Gal(L/K)).

Definition 5.47. Let L/K be an algebraic extension. Then L is a Galois extension
of K if Fix(Gal(L/K)) = K. Equivalently, the extension is Galois if for any x ∈ L \K,
there is a K-automorphism f of L such that f(x) 6= x.

Theorem 5.48. Let L/K be a finite field extension. Then the following are equivalent:

1. The extension L/K is Galois.

2. The extension L/K is normal and separable.

3. L is the splitting field over K of a separable polynomial P ∈ K[X].

Proof. 1. 1−→ 2: Let a ∈ L and a1 = a, · · · , ap ∈ L be the different images of a under
the action of Gal(L/K). Let P := (x − a1). · · · .(x − ap). The polynomial P is
separable since all its roots are distinct, and all the roots of P are in L. Moreover, P
is fixed under the action of Gal(L/K). Since the extension is Galois, the coefficients
of P are in K and P ∈ K[X]. So for any a ∈ L, a is a root of a separable polynomial
P ∈ K[X], which has moreover all its roots in L. So the extension is normal and
separable.
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2. 2−→ 3: Let α1, · · · , αn ∈ L be such that L = K(α1, · · · , αn). Let Pi ∈ K[X] be the
minimal polynomial of αi, S := {Pi : i ≤ n} and

P :=
∏
Q∈S

Q.

Then P is separable and L is the splitting field of P over K.

3. 3−→ 1: Let B := Fix(Gal(L/K)). The aim is to show that B = K. We do it by
induction on the degree of P . If all the roots of P are already in K (so in particular
if P has degree 1), then L = K and there is nothing to prove. Suppose then that
there is a root α of P which is not in K. We write P (X) = Q(X).(X − α), with
Q ∈ K(α)[X]. It is clear that L is the splitting field over K(α) of the polynomial
Q, which is separable and with deg(Q) < deg(P ). So by the induction hypothesis
we have that

K(α) = Fix(Gal(L/K(α))).

A K(α)-isomorphism of L is also a K-isomorphism of L. So an element which is
fixed by Gal(L/K) is also fixed by Gal(L/K(α)). This means that

B ⊂ Fix(Gal(L/K(α))) = K(α).

By the definition of B, the K-automorphisms of L are exactly the B-automorphisms
of L, so the number of distinct conjugates of α in L over K is equal to the number
of distinct conjugates of α in L over B. The field L is the splitting field –over K,
and over B– of the separable polynomial P . So by Theorem 5.42,

[K(α) : B] = [K(α) : K].

On the other hand, we have that K ⊂ B ⊂ K(α). By Proposition 2.6, we have that
[B : K] = 1 and B = K.

Proposition 5.49. Let L/K be a finite separable field extension of degree n, and M be an
extension of L. Let σ : K → M be a homomorphism, and assume that for every element
a ∈ L with minimal polynomial Ma ∈ K[X], then σ(Ma) splits in M in linear factors.
Then there are exactly n different homomorphisms of L to M extending σ.

Proof. By induction on n. If n = 1, then L = K and the result is obvious. Suppose the
result true for all i < n and let a ∈ L \ K be of degree m over K. By separability and
Proposition 5.22 of L/K, there are exactly m homomorphisms τ1, · · · , τm from K(a) to
M extending σ. The degree [L : K(a)] is strictly smaller than n, so by the induction
hypothesis, for each of the τi, there are exactly [L : K(a)] homomorphisms from L to
M extending τi. The number of homomorphisms from L to M extending σ is then [L :
K(a)].m = [L : K(a)].[K(a) : K] = n.

Proposition 5.50. Let L/K be a finite separable field extension of degree n, and let M
be a normal extension of K containing L. Then there are exactly n K-homomorphisms
from L to M .
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Proof. Apply the above Proposition 5.49 with σ = idK .

Theorem 5.51. Let L/K be a finite Galois extension. Then |Gal(L/K)| = [L : K].

Proof. By Theorem 5.48, a finite Galois extension is a finite normal separable extension.
Apply then Proposition 5.50 with M = L, and note that since the degree of L/K is finite,
then any K-endomorphism of L is in fact a K-automorphism.

5.5 Simple extensions

Definition 5.52. Let L/K be a field extension, such that L = K(α) for some element α
in L. Then L is a simple extension of K, and α is a primitive element of L/K.

Proposition 5.53. Let F be a finite field. Then the multiplicative group F ∗ of F is cyclic.

Proof. Let q be the cardinality of F , so the cardinality of F ∗ is q − 1. By lemma 10.2,
showing that the group F ∗ is cyclic is equivalent to showing that there is an element a ∈ F ∗
with order q−1 (by order of an element here we mean the order in the multiplicative group).
For a contradiction, suppose that s < q − 1 is the maximal order of an element of F ∗,
and let a ∈ F ∗ be an element with order s. An element of F ∗ with order dividing s is
an element of the field which is a root of the polynomial Xs − 1. So there are at most s
elements of F ∗ with order dividing s. Since s < q − 1, one can find an element b ∈ F ∗
with order t such that t does not divide s.
Write s and t as a product of prime factors,

s = pk11 .p
k2
2 . · · · .p

kn
n ,

and
t = pl11 .p

l2
2 . · · · .p

ln
n .

We can suppose that for some j ≤ n, ki < li for i ≤ j, and ki ≥ li for i > j. Since s is
maximal, we have that j 6= n. But t does not divide s, hence j 6= 0. Let

α := ap
k1
1 .p

k2
2 .··· .p

kj
j ,

and

β := bp
lj+1
j+1 .··· .p

ln
n .

It is easy to see that the order oα of α is p
kj+1

j+1 . · · · .pknn , and that the order oβ of β is

pl11 .p
l2
2 . · · · .p

lj
j . The natural numbers oα and oβ are relatively prime, so by Lemma 10.3,

the order of α.β is oα.oβ > s, since oα.oβ is the least common multiple of s and t, where t
does not divide s. This contradicts the maximality of s.

Lemma 5.54. Let K be an infinite field and V be a K-vector space. Let H1, · · · , Hn be
a finite family of proper subspaces of V . Then V 6=

⋃
i≤n

Hi.

Proof. We prove the result by induction. The result is clear for n = 1. Suppose it is
proved for n and we show it for n + 1. Let H1, · · · , Hn+1 be a finite family of proper
subspaces of V and suppose for a contradiction that

V =
⋃

1≤i≤n+1

Hi. (∗)
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By the induction hypothesis, V 6=
⋃
i≤n

Hi. So let x ∈ V \
⋃
i≤n

Hi, and let y ∈ V \ Hn+1.

Since K is infinite, and by (∗), we can find λ 6= δ ∈ K and i ≤ n+ 1 such that x+λy ∈ Hi

and x+ δy ∈ Hi. So both x and y are in Hi. Which is a contradiction.

Theorem 5.55. Let L/K be a finite separable extension. Then L/K is simple.

Remark: This result was given (for extensions of Q) by Galois without proof.

Proof. Suppose first that K is finite. Since the extension is finite, then L is a finite field.
The wanted result is a direct consequence of Proposition 5.53.

Suppose now that K is infinite, and let n := [L : K]. Let M be a normal extension
of K containing L. The extension L/K is separable of degree n, so by Corollary 5.50
there are exactly n different K-homomorphisms, σ1, · · · , σn from L to M . Now we look
at L as a K-vector space, and at the σi as K-vector space homomorphisms. For any i, j,
σi 6= σj , so Lij := ker(σi−σj) 6= L. There are finitely many Lij and all of them are proper
K-subspaces of the K-vector space L. The field K is infinite, so by Lemma 5.54 we have

U :=
⋃

1≤i<j≤n
Lij 6= L.

Let a ∈ L\U . So for any i < j ≤ n, σi(a) 6= σj(a), thus a has at least n different conjugates
over K. By Theorem 5.42, the degree of K(a) over K is at least n. But K(a) ⊂ L and
the degree of L over K is n. So L = K(a).

Proposition 5.56. Let L/K be a simple algebraic field extension. Then L/K has finitely
many intermediate fields.

Proof. Let α ∈ L be such that L = K(α), and let P be the minimal polynomial of α over
K. Let A be any intermediate field and Q be the minimal polynomial of α over A. It is
clear that Q divides P . Denote by B the subfield of L generated over K by the coefficients
of Q. So B ⊂ A, and on the other hand, Q ∈ B[X], and Q(α) = 0. So the degree of α over
A, which is the degree of Q, is greater than or equal to the degree of α over B. Therefore
A = B.
Any intermediate field is thus a subfield of L generated by the coefficients of a normed
factor of P . The wanted result follows.

We have even a method to find the intermediate fields of a simple algebraic extension:
if L,K,P and α are as in the proposition with [L : K] = n, then an intermediate field A
of degree m over K is generated by the coefficients of some normed factor of P having α
as a root.

Example. The extension Q(
√

2,
√

3) is simple, and admits
√

2 +
√

3 as a primitive ele-
ment.The minimal polynomial of

√
2 +
√

3 over Q is

X4 − 10X2 + 1,

the other roots of being
√

2 −
√

3, −
√

2 +
√

3 and −
√

2 −
√

3. A proper intermediate
field has necessarily degree 2 over Q, is thus by the above argument generated by the
coefficients of one of the following polynomials:
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(X − (
√

2 +
√

3))(X − (
√

2−
√

3)) = X2 − 2
√

2X − 1
(X − (

√
2 +
√

3))(X − (−
√

2 +
√

3)) = X2 − 2
√

3X + 1
(X − (

√
2 +
√

3))(X − (−
√

2−
√

3)) = X2 − (5 + 2
√

6).
The proper intermediate fields of the extension Q(

√
2,
√

3)/Q are thus the fields Q(
√

2),
Q(
√

3) and Q(
√

6).

Example. The extension Q(i, 3
√

2) is simple and is generated i + 3
√

2 (exercise). The
minimal polynomial of i+ 3

√
2 is

P := X6 + 3X4 − 4X3 + 3X2 + 12X + 5,

the other roots being i + j 3
√

2, i + j2 3
√

2, −i + 3
√

2, −i + j 3
√

2, −i + j2 3
√

2. A proper
intermediate field has degree 2 or 3 over Q.

An intermediate field of degree 3 over Q is generated by the coefficients of one of the
following polynomials: (X− (i+ 3

√
2)).(X− (−i+ 3

√
2)), (X− (i+ 3

√
2)).(X− (±i+ j 3

√
2)),

(X − (i+ 3
√

2)).(X − (±i+ j2 3
√

2)). The last four polynomials are not in Q(i, 3
√

2), so the
only possible factor is the first one, which is

(X − 3
√

2)2 + 1 = X2 − 2
3
√

2X +
3
√

4 + 1.

So the only intermediate field of degree 3 over Q is Q( 3
√

2).

The intermediate fields of degree 2 over Q are given by the factors of degree 3 of P
having i+ 3

√
2 as a root, and coefficients in Q(i, 3

√
2). The decomposition

P = (X3 − 3iX2 − 3X − 2 + i).(X3 + 3iX2 − 3X − 2− i)

yields the field Q(i).

Counterexample 1. Let p be a prime number, X,Y be two distinct free variables. Let
L := Fp( p

√
X, p
√
Y ) and K := Fp(X,Y ). Then the extension L/K has degree p2, but for

every a ∈ L, a has degree p over K since ap ∈ K. So L/K is not simple.
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6 EXAMPLES

6 Examples

Fix a field K with char(K) 6= 2, 3. The easiest non-trivial example of a Galois group of
a polynomial P ∈ K[X] is the case where P is quadratic, say P = aX2 + bX + c. The
splitting field of P is then K(

√
∆), where ∆ = b2−4ac, and Gal(K(

√
∆)/K) is isomorphic

to the trivial group or Z/2, depending on whether ∆ has a square root in K or not.

6.1 The Galois group of cubic polynomials

Let P = X3 +pX+ q ∈ K[X], denote by L the splitting field of P over K, and let a, b and
c be the roots of P . If P is reducible, then it is the product of a linear and a quadratic
polynomial. Therefore, Gal(L/K) is the trivial group or Z/2, depending on whether P
splits or not in linear factors over K.

Suppose from now on that P is irreducible. If L = K(a), then [L : K] = 3, and
Gal(L/K) is a subgroup of S3 of order three. So Gal(L/K) = A3. If K(a) is a proper
subfield of L, then [L : K] = 6 (to see this, note that L = K(a, b), and b has degree 1 or 2
over K(a), depending on whether K(a) = L or not.) So Gal(L/K) is a subgroup of order
6 of S3, is thus equal to S3.

We give now an easy criterion to determine whether the Galois group of P is A3 or S3.
Let ∆ = (a− b)2(b− c)2(a− c)2 be the discriminant of P . This is a symmetric function of
the roots, and a simple calculation shows that ∆ = −4p3 − 27q2. Let d be a square root
of ∆, say d := (a− b)(a− c)(b− c). It is clear that d ∈ L.

We check now that L = K(d, a). Indeed, noting that a+ b+ c = 0 and abc = −q, we
have

(a− b)(a− c) = a2 − a(b+ c) + bc = 2a2 − q

a
∈ K(a)

is an element of K(a), so b − c is an element of K(d, a). It is clear now that b and c are
elements of K(d, a), and this proves our claim.

Now we have two cases:

1. If ∆ has a square root in K, so d ∈ K and L = K(a) has degree three over K. In
this case, Gal(L/K) is A3.

2. If ∆ does not have a square root in K, so d has degree 2 over K, and for divisibility
reasons, the degree of a over K(d) remains 3. So [L : K] = 6 and Gal(L/K) = S3.

Example. The polynomials X3 − 3X + 1 and X3 + 3X + 1 are irreducible over Q. Their
discriminants are 81 and −135, their Galois groups over Q are thus A3 and S3 respectively.
Any root of the first polynomial is a primitive element of its splitting field. For the second
one, a root is not sufficient: one needs also

√
−135 or i

√
15. A primitive element in the

second case is for example a+ i
√

15, where a denotes a root of X3 + 3X + 1.

6.2 Galois groups over finite fields

Let p ∈ N be prime, r ∈ N∗ and q := pr. Every element of Fp is invariant under any
automorphism of Fq, and the extension Fq/Fp is separable and has degree r. Therefore,
Gal(Fq/Fp) has exactly r elements.
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A particular element of Gal(Fq/Fp) is the Frobenius map fp : x 7→ xp. If n ∈ N is such
that (fp)

n = id, then xp
n

= x holds for every x ∈ Fq, and since Fq has pr distinct elements,
then n ≥ r. This shows that the order of fp in Gal(Fq/Fp) is exactly r, hence Gal(Fq/Fp)
is a cyclic abelian group generated by fp. Now if K is any finite field with char(K) = p,
and if Fq is an extension of K, then Gal(Fq/K) is a subgroup of Gal(Fq/Fp), is thus a
cyclic abelian group. We showed the following.

Theorem 6.1. Let L/K be a finite field extension of finite fields. Then Gal(L/K) is a
cyclic abelian group.

Let K be a finite field and P ∈ K[X] be separable of degree n. The galois group G of
P , seen as a group of permutations of the roots of P , is a cyclic subgroup of Sn, generated
by some σ ∈ Sn. Furthermore, P is irreducible if and only if the action of G on the roots
is transitive (Theorem 5.42), if and only if G is generated by some cycle of length n.

If P is reducible, write P = P1. · · · .Pm with the Pi irreducible, and write σ =
σ1. · · · .σm′ where the σi are disjoint cycles. It is easy to see that the restriction of σ
to the set of roots of Pi is one of the σj , and we have moreover that the degree of Pi is
equal to the length of σj . So after permuting the Pi, we can suppose that for ever i, σi is
a generator of the Galois group of Pi over K.

Example. On F5 we have:

X5 + 2X2 +X + 4 = (X2 + 2)(X3 + 3X + 2),

and the two factors are irreducible. So after renumbering the roots, we have that the Galois
group of X5 + 2X2 +X + 4 over F5 is the subgroup of Sn generated by (1, 2)(3, 4, 5).

6.3 On the Galois group of binomial equations in characteristic 0

Let n ∈ N \ {0} and w := e2iπ/n. Any element σ of the Galois group of Xn − 1 over Q
is determined by the image of w, which is some power of w. Let σ1, σ2 be in the Galois
group, σ1(w) = wa1 and σ2(w) = wa2 (note that a1, a2 6= 0). Then σ1 ◦ σ2(w) = wa1a2 .
Therefore, the Galois group of Xn − 1 is a subgroup of the multiplicative group (Z/nZ)×

of invertible elements in (Z/nZ, .). In particular, it is abelian.

Now let n ∈ N\{0}, w := e2iπ/n, K be an extension of Q containing w, b be an element
of K, a ∈ C be such that an = b and G be the Galois group of Xn− b over K. An element
of G is determined by the image of a, which is an element of the form wia for some i ≤ n.
Furthermore, if σ1(a) = wi1a and σ2(a) = wi2 .a, then σ1 ◦ σ2(a) = wi1+i2a. Hence, the
Galois group of Xn − a is a subgroup of Z/n, it is thus abelian. Furthermore, the degree
of splitting field of Xn − a, which is the order of the galois group, divides n.

6.4 The Galois group of X4 − a over Q.

Let a ∈ Q and P = X4 − a. Note first that

4
√
a = 4

√
−(−a) =

1 + i√
2

4
√
−a =

1 + i

2
4
√
−4a.
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So we get the roots of P by multiplying the roots of Q := X4 + 4a by (1 + i)/2. Since i in
the splitting fields of both P and Q, these two polynomials have the same splitting field
over Q. We can thus suppose without loss of generality that a > 0. We have three cases:

1. P has a root b in Q: In this case, we write P = (X − b)(X + b)(X2 + b2), and the
Galois group of P is Z/2.

Example: P = X4 − 1, the Galois group of P contains the identity, and the
transposition exchanging the roots i and −i. The polynomial X4+4 provides another
example with Galois group Z/2. To see this, use the above remark and the fact that
−4.(−4) = 16 is positive, and has a quartic root in Q.

2. P splits but has no roots in Q: We write P as a product (X2+αX+β)(X2+α′X+
β′). A simple calculation shows that α = α′ = 0 and β = −β′ (simple unless you
forget that a > 0). So β ∈ Q, has no square roots in Q, and P = (X2 − β)(X2 + β).
The splitting field is then Q(

√
β, i), and the Galois group of P is Z/2× Z/2.

Example: X4 − 4. Number the roots
√

2,−
√

2, i
√

2,−i
√

2 by 1, 2, 3 and 4 respec-
tively. The Galois group consists of the following permutations of the roots:

id (1, 2) (3, 4) (1, 2)(3, 4).

3. P is irreducible: The splitting field is generated by i and the real quartic root of
a, has thus degree 8 over Q. The Galois group G of P is a subgroup of S4 of order
8. By Sylow (or direct checking) G is isomorphic to the dihedral group D8.

Example: X4 − 2. Number the roots 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2 by 1, 2, 3 and 4 respec-
tively. The Galois group corresponds to the following permutations of the roots:

id (1, 2, 3, 4) (1, 3)(2, 4) (1, 4, 3, 2)
(2, 4) (1, 2)(3, 4) (1, 3) (1, 4)(2, 3).
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7 FTGT

7 The fundamental theorem of Galois theory

7.1 The main theorem

Theorem 7.1. (Emil Artin) Let L/K be any field extension, and H be a finite subgroup
of Gal(L/K) of order r. Then L is a finite Galois extension of B := Fix(H), and
Gal(L/B) = H.

Proof. Let a be an element of L, and a1 = a, a2, · · · , am, m ≤ r, be the set of different
images of a under the action of H. The separable polynomial

P :=
∏

1≤i≤m
(X − ai)

remains unchanged under any g ∈ H, and has thus all its coefficients in B. This shows
that for all a ∈ L, a is algebraic separable and normal over B, and [B(a) : B] ≤ r.

Choose a ∈ L with maximal degree over B, and denote this degree by s. If B(a) 6= L,
let b ∈ L \ B(a). The extension B(a, b)/B is finite and separable since both a and b
are separable and have finite degree over B. By Theorem 5.55, B(a, b) = B(c) for some
c ∈ L. By the choice of b, B(a, b) contains strictly B(a), so [B(c) : B] > [B(a) : B]. This
contradicts the maximality of s, and shows that L = B(a). Therefore, [L : B] = s ≤ r,
and L/B is a finite normal separable extension, thus a Galois extension by Theorem 5.48.

By Proposition 5.51, |Gal(L/B)| = s ≤ r. On the other hand, by the definition of B
we have that H ⊂ Gal(L/B). Thus s = r, and Gal(L/B) = H.

Theorem 7.2. (Fundamental theorem of Galois Theory - FTGT)
Let L/K be a finite Galois extension. Let F be the set of intermediate fields of L/K,

and G be the set of subgroups of Gal(L/K).
Denote by Fix : G −→ F the application which to a subgroup H of Gal(L/K) associates
the fixed field of H, and by G : F −→ G the application which to an intermediate field F
associates the Galois group Gal(L/F ). Then the following hold:

1. Fix and G define reciprocal bijections, decreasing for the inclusion.

2. Fix and G define by restriction reciprocal bijections between the set F ′ of normal
extensions of K contained in L, and the set G′ of normal subgroups of Gal(L/K).

3. If F and F ′ are two elements of F , then F ′ is a normal extension of F if and only
if Gal(L/F ′) is a normal subgroup of Gal(L/F ). In this case we have

Gal(F ′/F ) =
Gal(L/F )

Gal(L/F ′)

4. If F and F ′ are two elements of F such that F ⊂ F ′, then

[F ′ : F ] =
|Gal(L/F )|
|Gal(L/F ′)|

.

41



7.1 The main theorem 7 FTGT

Proof. 1. It is clear that Fix and G are well defined and decreasing for the inclusion.
The fact that Fix ◦G = idF is a direct consequence of the fact that L/F is a Galois
extension, for any F ∈ F . The fact that G ◦Fix = idG is exactly what Theorem 7.1
states.

2. • Let F ∈ F ′. Fix an element σ ∈ G(F ), and let τ be any element of Gal(L/K).
Let x be an element of F . Since F/K is normal, then τ(x) ∈ F , so στ(x) = τ(x),
and τ−1στ(x) = x. This shows that τ−1στ ∈ G(F ), so G(F ) is a normal
subgroup of Gal(L/K), thus G(F ) ∈ G′.
• Let H ∈ G′, x ∈ Fix(H), and y be any root of the minimal polynomial of
x over K. The aim is to show that y ∈ Fix(H). By Theorem 5.42, there is
τ ∈ Gal(L/K) such that τ(x) = y. Let σ be any element of H. Since H is
normal, then τ−1στ ∈ H, thus τ−1στ(x) = x, and στ(x) = τ(x). This shows
that y = τ(x) ∈ Fix(H). Therefore, the extension Fix(H)/K is normal, and
Fix(H) ∈ F ′.

3. For the first claim, use 2 with F instead of K. For the second part, note that if F ′

is a normal extension of F , then the restriction operation

ϕ :=

{
Gal(L/F ) → Gal(F ′/F )

σ 7→ σ|F ′

is a well defined epimorphism, and Ker(ϕ) = Gal(L/F ′). The wanted result follows.

4. Since L/F and L/F ′ are Galois extensions, by Theorem 5.51 we have the following:

[F ′ : F ] =
[L : F ]

[L : F ′]
=
|Gal(L/F )|
|Gal(L/F ′)|

.

Example. Let L = Q( 3
√

2, j) be the splitting field of X3 − 2. We number the roots
3
√

2, j 3
√

2 and j2 3
√

2 by 1, 2 and 3 respectively. We have seen that Gal(L/Q) = S3. The
group S3 has 6 subgroups:

{id} A3 S3 {id, (1, 2)} {id, (1, 3)} {id, (2, 3)}.

The first three of these subgroups are normal, and the last three are not. They
correspond by the Galois correspondence to the following intermediate fields of L/K re-
spectively

Q( 3
√

2, j) Q(j) Q Q(j2 3
√

2) Q(j 3
√

2) Q( 3
√

2).

The first three of those fields are normal extensions of Q, and the last three are not.
Those are all the intermediate fields of the extension.
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7.2 Example: the Galois group as a direct product

Let M/K be a finite Galois extension, and L1, L2 be intermediate fields, which are normal
extensions of K. Denote by G := Gal(M/K), G1 := Gal(M/L1) and G2 := Gal(M/L2).
Then we have the following
Fact: If L1 ∪ L2 generates M and L1 ∩ L2 = K, then G ' G1 × G2. Furthermore, we
have that

G = Gal(M/K) ' Gal(L1/K)×Gal(L2/K).

It is sufficient to show that G1, G2 are normal subgroups of G, that G1 ∩ G2 = {1} and
G1.G2 = G. The fact that G1 and G2 are normal subgroups is given by the second point
of Theorem 7.2, and the fact that G1∩G2 = {1} and G1.G2 = G follows by the first point
of the same theorem. The third point of the theorem yields now directly that

Gal(M/K) ' Gal(L1/K)×Gal(L2/K).

Application: let p < q be two prime natural numbers such that p does not divide
q − 1, and K := Q(e2iπ/p, e2iπ/q). Let a, b be two elements of K not having pth and qth

roots respectively in Q. Let α, β be a pth and a qth root of a, b respectively, and set
L := K(α, β).

Claim. α has degree p over K:
By Section 6.3, the degree of e2iπ/p over Q divides p − 1, and the degree of e2iπ/q over
Q(e2iπ/p) divides q−1. So the degree of K/Q is prime to p, which is the degree of Q(α)/Q.
This shows that α /∈ K. Furthermore, again by Section 6.3, the degree of α over K divides
p, which is a prime number. So the degree of α over K is necessarily p, and this proves
our claim.

A similar argument shows that β has degree q over K. Now since p and q are relatively
prime, we have that K(α) ∩ K(β) = K. By the above fact, Gal(L/K) = Z/p × Z/q.
Furthermore, Z/p×Z/q has exactly four subgroups: {0},Z/p×{0}, {0}×Z/q and Z/p×
Z/q, which correspond to the four intermediate fields: K, K(β), K(α) and L. In particular,
if x ∈ L \K(α) ∪K(β), then x has degree pq over K.
Example: 5

√
3 + 7
√

5 is a primitive element of Q( 5
√

3, 7
√

5)/Q.
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8 Applications

8.1 The fundamental theorem of algebra

We show in this section that the field C is algebraically closed. We use that in R, a
polynomial of odd degree has at least one real root.

Lemma 8.1. An element of C has its square roots in C.

Proof. Let a = r.eiθ be an element of C, and let b :=
√
r.eiθ/2. Then b2 = a.

Proposition 8.2. A polynomial P ∈ R[X] splits in C in linear factors.

Proof. Let P ∈ R[X], and let L be the splitting field of (X2 + 1)P over R. We want to
show that L = C. The field R has characteristic zero, so L/R is separable, thus Galois. By
Theorem 10.6, let H be a Sylow 2-subgroup of Gal(L/R), and K := Fix(H). The index
of H in G is odd, so by Theorem 7.2, [K : R] is odd. Let α ∈ K be a primitive element of
the extension K/R, and Q ∈ R[X] be its minimal polynomial. Then deg(Q) is odd, and
Q has a root in R. Since Q is irreducible, then Q is linear. This shows that K = R, and
Gal(L/R) is a 2-group. Since Gal(L/C) is a subgroup of Gal(L/R), then the same holds
for Gal(L/C).

If L is a proper extension of C, then Gal(L/C) is non trivial. By Proposition 10.4, there
is a subgroup of Gal(L/C) of index 2, which corresponds by Theorem 7.2 to an extension
of C of degree 2, thus a non trivial extension of C by a square root. Contradiction.

Theorem 8.3. The field C is algebraically closed.

Proof. Let P ∈ C[X], say P =
∑
aiX

i. Let bi be the complex conjugate of ai, and
Q :=

∑
biX

i. The polynomial PQ remains unchanged under complex conjugation, thus
PQ is in R[X]. By Proposition 8.2, the polynomial PQ splits in C in linear factors. In
particular, P splits in C in linear factors.
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8.2 Cyclotomic extensions

8.2.1 The group (Z/nZ)× of invertibles of Z/nZ

An element x is invertible in Z/nZ if and only if it is prime to n. The set of invertible ele-
ments of Z/nZ is denoted by (Z/nZ)×. It is a multiplicative group. The order of (Z/nZ)×

is ϕ(n), where ϕ is the Euler function defined by: ϕ(n) := |{m : m < n, gcd(m,n) = 1}|.

Proposition 8.4.

1. If n = rs with gcd(r, s) = 1, then (Z/nZ)× ' (Z/rZ)× × (Z/sZ)× and ϕ(n) =
ϕ(r)ϕ(s).

2. If n = pk for some prime p > 2, then (Z/nZ)× is cyclic of order ϕ(pk) = pk − pk−1.

3. For k ≥ 2, (Z/2kZ)× ' Z/2Z× Z/2k−2Z.

4. If {pi : i ∈ I} is the set of distinct prime factors of n, then ϕ(n) = n.
∏
i∈I

(1− 1

pi
).

Example. 1400 = 23.52.7, so ϕ(1400) = 1400.(1− 1
2).(1− 1

5).(1− 1
7) = 480.

8.2.2 Möbius inversion formula

A function f : N∗ → R is said to be multiplicative if for all m,n with gcd(m,n) = 1, we
have f(mn) = f(m).f(n).

Example. The Euler phi function is multiplicative.

We define the Möbius function µ : N→ Z as follows:
µ(1) = 1
µ(n) = 0 if n has a square factor.
µ(n) = (−1)r if n has no square factors, where r is the number of the different prime
factors of n.

Proposition 8.5. The Möbius function is multiplicative, and for every n > 1 we have∑
d∈D(n)

µ(d) = 0.

Proof. Let n :=
∏
i=1,·,r p

ki
i be the decomposition of m as a product of distinct prime

factors, and let m :=
∏
i=1,·,r pi. Then

∑
d∈D(n)

µ(d) =
∑

d∈D(m)

µ(d) =
∑

0≤k≤r

(
r

k

)
(−1)k = (1− 1)r.

Proposition 8.6. Let (G, .) be an abelian group, g : N∗ → G be a function, and f : N∗ →
G be the function defined by:

f(n) :=
∑
d|n

g(d).
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Then for every n ∈ N∗,

g(n) =
∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(
n

d
)f(d).

Remark 8.7. If the operation of G is denoted multiplicatively, then the result states that
if

f(n) :=
∏
d|n

g(d),

then for every n ∈ N∗,

g(n) =
∏
d|n

[f(
n

d
)]µ(d) =

∏
d|n

[f(d)]µ(
n
d
).

This is known as the Möbius inversion formula.

Proof.
∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(d)

(∑
e|n
d

g(e)

)
=
∑
e|n

g(e)

(∑
d|n
e

µ(d)

)
= g(n).

8.2.3 Roots of Unity

In this section we work in characteristic zero. An nth root of unity is thus an element of C
of the form e2kiπ/n. The set of nth roots of unity form an abelian multiplicative group χn,
which is isomorphic to Z/n. An nth root of unity is said to be primitive if it generates
(χn, .). It is easy to check that an nth root e2kiπ/n is primitive if and only if gcd(n, k) = 1.
There are thus exactly ϕ(n) primitive nth roots of unity. The nth cyclotomic polynomial
is the polynomial of degree ϕ(n) defined by

Φn(X) :=
∏

α primitive

(X − α).

Proposition 8.8.

1. Xn − 1 =
∏
d|n

Φd(X).

2. Φn(X) =
∏
d|n

(Xd − 1)µ(n/d), and if n is prime, then Φn(X) =
∑

0≤i≤n−1
Xi.

3. Φn(X) ∈ Z[X].

4. Φn(X) is irreducible over Q.

Proof. 1. Xn − 1 =
∏
α∈χn

(X − α) =
∏
d|n

∏
α∈χn,ord(α)=d

(X − α) =
∏
d|n

Φd(X).

2. Follows directly by 1 and Möbius formula.

3. Follows directly by 2 : Φn(X) is a unitary polynomial which is the quotient of two
unitary polynomials over Z.
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4. Let α be a primitive nth root of unity. Let P be the minimal polynomial of α over
Q, A be the set of roots of P , and B be the set of nth primitive roots of unity. It is
enough to show that A = B.

Since Φn ∈ Z[X] and Φn(α) = 0, then P is a factor of Φn and A ⊂ B.

For the other direction, we show first that for every prime number p not dividing
n, A is stable by taking pth powers. Suppose it were not the case for some p, and
let α be a primitive nth root of unity such that P (αp) 6= 0. Let Q ∈ Q[X] be such
that P.Q = Xn − 1. Since the leading coefficient of P is 1, it is easy to check that
Q ∈ Z[X].

P (αp) 6= 0, and αp ∈ χn, so Q(αp) = 0. Since P is irreducible, then P (X) divides
Q(Xp). Let R ∈ Z[X] be such that P (X).R(X) = Q(Xp). We reduce modulo p, let
P1, Q1 and R1 be the corresponding polynomials. We have the following:

P1(X).R1(X) = Q1(X
p) = (Q1(X))p.

Therefore, any irreducible factor U of P1 is a factor of (Q1(X))p, thus of Q1 since
Fp[X] is a factorial domain. It follows that the polynomial Xn−1 ∈ Fp[X] has double
roots, thus is not prime to its derivative. This can only happen if its derivative is 0
in Fp[X], i.e. if p|n. Contradiction.

We showed that A is stable under taking pth power, for every prime p not dividing
n. By induction, one sees easily that A is stable under taking mth powers for every
natural number m such that gcd(m,n) = 1. Since α ∈ A, then all the other primitive
roots of unity are in A, so B ⊂ A.

Example.

Φ30(X) =
(X30 − 1)(X5 − 1)(X3 − 1)(X2 − 1)

(X15 − 1)(X10 − 1)(X6 − 1)(X − 1)

=
(X15 + 1)(X + 1)

(X5 + 1)(X3 + 1)

= X8 +X7 −X5 −X4 −X3 +X + 1.

Corollary 8.9. Let n > 1 and α be a primitive nth root of unity. Then

Gal(Q(α)/Q) ' (Z/nZ)×.

Proof. We saw in Section 6.3 that Gal(Q(α)/Q) is isomorphic to a subgroup of (Z/nZ)×.
Proposition 8.8 shows that the degree of α over Q is equal to the degree of Φn, namely
ϕ(n). On the other hand, the order of (Z/nZ)× is ϕ(n). The statement follows.
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8.3 Constructible numbers

8.3.1 A Characterization of constructible numbers

We showed that a ∈ C is constructible with straightedge and compass if and only if there
is a tower of subfields of C:

K0 = Q ⊂ K1 ⊂ · · · ⊂ Kn

such that a ∈ Kn, and for any 0 < i ≤ n, Ki is generated by
√
ai over Ki−1, for some

ai ∈ Ki−1. So in particular, if a is constructible, then the degree of a over Q is of the form
2r for some r ∈ N. Now we show a partial converse.

Theorem 8.10. Let a ∈ C. If a is contained in a Galois extension L of Q of degree 2r

for some r ∈ N, then a is constructible.

Proof. The extension L/Q is Galois, and has degree 2r. So Gal(L/Q) is a 2-group of order
2r. By Proposition 10.4, there is a sequence of subgroups of Gal(L/Q),

G0 = Gal(L/Q) ⊃ G1 ⊃ · · · ⊃ Gr = {1}

such that ever Gi has index 2 in Gi−1. For every i, let Fi := Fix(Gi). So by Theorem 7.2
we have a tower of subfields of C

F0 = Q ⊂ F1 ⊂ · · · ⊂ Fr = L.

Furthermore, [Fi : Fi−1] = 2, so Fi is generated by
√
ai over Fi−1, for some ai ∈ Fi−1.

Thus a is constructible.

Lemma 8.11. Let n > 1 be a natural number having an odd factor a > 1. Then 2n + 1 is
not prime.

Proof. Write n = ab. The number a is odd, so (−1)a+1 = 0. Thus the polynomial Xa+1
is divisible by X + 1. Applying this fact for X = 2b, it follows that 2n + 1 = (2b)a + 1 is
divisible by 2b + 1. Thus 2n + 1 is not prime.

Definition 8.12. A Fermat prime Fn is a prime number of the form 22
n

+ 1.

This terminology is due to the fact that Fermat conjectured that all the Fn are prime
numbers. In fact, the first five members of the list, namely 3, 5, 17, 257, 65537, are all
prime. Euler showed that F5 = 4294967297 is divisible by 641. It is an open question
whether there are prime numbers of the form Fk with k > 4, or whether there are infinitely
many Fermat primes.

Theorem 8.13. The regular n-gon is constructible if and only if n = 2r.p1. · · · .pk, where
the pi are distinct Fermat primes.

Proof. Let n be such that the regular n-gon is constructible. Write n = 2r.pr11 . · · · .p
rk
k

where the pi are distinct odd primes and ri ≥ 1. We show that for every i, ri = 1 and pi
is a Fermat Prime.

The degree of e2iπ/n over Q is of the form 2m for some m ∈ N \ {0}. It follows by
Proposition 8.8 that the degree of e2iπ/n over Q is ϕ(n). Proposition 8.4 yields that ϕ(n)
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is divisible by pri−1i , thus ri = 1 for every i. Furthermore, by multiplicativity, ϕ(pi) is a
power of 2 for all i. The fact that the pi are Fermat primes follows by Lemma 8.11.

The converse follows by Theorem 8.10.

Example. The regular 7-gon, 9-gon, 25-gon are not constructible. The regular pentagon,
17-gon, 65537-gon are constructible
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8.3.2 Fifth roots of unity

We showed that the fifth roots of unity are constructible. Now we will calculate them
explicitely. The expressions we will find involve only the basic arithmetic operations
and extracting squareroots. This yields an explicit method for constructing the regular
pentagon.

Let α be a primitive 5th root of unity. The minimal polynomial of α is the fifth
cyclotomic polynomial

Φ5(X) = 1 +X +X2 +X3 +X4,

the other roots being α2, α3 and α4. Denote by G the galois group of Q(α)/Q. The group
G is isomorphic to (Z/5Z)×, which is cyclic of order 4, thus isomorphic to Z/4Z.

An element σ of G is determined by the image of α. We look first for a generator σ
of G, which comes to the same as finding a generator of the group (Z/5Z)×. It is clear
that 2 is such a generator, since the successive powers of 2 in Z/5Z are (2, 4, 3, 1). So the
element σ ∈ G determined by σ(α) = α2 is a generator of G, the sequence of succesive
images of α by σ being (α2, α4, α3, α).

The group G has one proper intermediate subgroup: {id, σ2}. So by Theorem 7.2,
the extension Q(α)/Q, which is Galois, admits exactly one proper intermediate field F .
Furthermore, F has degree two over Q, so F is generated over Q by any element of
Fix({id, σ2}) \ Fix(G), thus any element of Q(α) fixed by σ2 but not by σ. An easy
choice is

λ1 := α+ σ2(α) = α+ α4.

The element λ1 has degree two over Q, it has thus exactly one conjugate λ2 by G.

λ2 = σ(λ1) = σ(α) + σ(α4) = α2 + α3.

A direct calculation gives

λ1 + λ2 = α+ α2 + α3 + α4 = −1,

and
λ1λ2 = (α+ α4)(α2 + α3) = α+ α2 + α3 + α4 = −1.

λ1 and λ2 are thus the roots (−1−
√

5)/2 and (−1 +
√

5)/2 of the polynomial X2 +X−1.
This shows in particular that F = Q(

√
5).

Now α has zwei conjugates over F : α and σ2(α). The sum α + σ2(α) = λ1, and the
product α.σ2(α) = 1. Thus α is a root of the polynomial

X2 − λ1X + 1.

So

α =
λ1 −

√
λ21 − 4

2
.
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8.3.3 Seventh roots of unity

The seventh cyclotomic polynomial is

Φ7(X) = 1 +X +X2 +X3 +X4 +X5 +X6.

Let ω be any primitive seventh root of unity. Then the other primitive roots are ω2, ω3, ω4,
ω5 and ω6. Denote by G the Galois group of Q(ω)/Q. So G is isomorphic to (Z/7Z)× which
is a cyclic group of order 6. The group G is thus isomorphic to (Z/6Z,+). The element 3 is
a generator of (Z/7Z)×, and the powers of 3 in (Z/7Z)× are (3, 2, 6, 4, 5, 1). Denote by σ the
element of G such that σ(ω) = ω3. Then σ is a generator of G, G = {id, σ, σ2, σ3, σ4, σ5}.

The unique subgroup of order 3 of G is the group H = {id, σ2, σ4}, and it is the galois
group of an intermediate field K which is an extension of degree 2 of Q. So K is generated
by any element fixed by H but not by G, for example the element

α := ω + σ2(ω) + σ4(ω) = ω + ω2 + ω4.

Note that α /∈ Q, since this would contradict the irreducibility of Φ7. Furthermore, α
admits exactly one conjugate over Q, namely

σ(α) := ω3 + ω6 + ω5 = −1− α.

A direct calculation shows that α.σ(α) = 2. So α and σ(α) are the roots of the polynomial

X2 +X + 2,

say α = −1+
√
−7

2 . We showed in particular that the unique intermediate field of dimension

2 over Q is Q(i
√

7).

The Galois group of Q(ω)/Q(α) is H, thus [Q(ω) : Q(α)] and Q(ω) is generated over
Q(α) by any element which is not fixed by H. We will choose an element which is a third
root over Q(α, j). Let

β = ω + jω2 + j2ω4.

The conjugates of β by H are β, jβ and j2β, this shows that β3 ∈ Q(j, i
√

7). A direct
calculation gives

β3 = 6 + (1 + 3j2)(ω3 + ω5 + ω6) + 3j(ω + ω2 + ω4)

= 6 + σ(α) + 3(jα+ j2σ(α))

= 7− 3

2

√
21−

√
−7

2
.

This shows in particular that the seventh cyclotomic is contained in the extension

Q
(
j,

3

√
7− 3

2

√
21−

√
−7

2

)
.

We calculate the roots explicitely. Let

γ := ω + j2ω2 + jω4.
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It is easy to check that β.γ = α− σ(α) =
√
−7. Now we have

ω + ω2 + ω4 = α

ω + jω2 + j2ω4 = β

ω + j2ω2 + jω4 = γ.

So

ω =
1

3

(
−1 +

√
−7

2
+ β +

√
−7

β

)

=
1

3

−1 +
√
−7

2
+

3

√
7− 3

2

√
21−

√
−7

2
+

√
−7

3

√
7− 3

2

√
21−

√
−7
2

 .
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8.3.4 Seventeenth roots of unity and the construction of the regular hep-
tadecagon

The seventeenth cyclotomic polynomial is

Φ17(X) = 1 +X +X2 + · · ·+X16,

has degree 16 = 24. So, as mentioned above, the seventeenth roots of unity are con-
structible. Let ω be any primitive seventh root of unity. Then the other primitive roots
are the ωi, 1 ≤ i ≤ 16. Denote by G the Galois group of Q(ω)/Q. So G is isomorphic
to (Z/17Z)× which is a cyclic group of order 16. The group G is thus isomorphic to
(Z/16Z,+). The element 3 is a generator of (Z/17Z)×, and the powers of 3 in (Z/17Z)×

are
(3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1).

Denote by σ the element of G such that σ(ω) = ω3. Then σ is a generator of G,

G = {σi : 1 ≤ i ≤ 16}.

Denote by [σi] the subgroup of G generated by σi. To the decreasing chain of subgroups

G = [σ] ⊃ [σ2] ⊃ [σ4] ⊃ [σ8] ⊃ [σ16] = {id}

corresponds a tower of fields, each field being a quadratic extension of the previous one:

Q ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 = Q(ω).

The field K1 is generated over Q by any element of Q(ω) fixed by σ2 but not by σ, as for
instance the element

x1 :=

8∑
i=1

σ2i(ω) =

8∑
i=1

ω32i = ω9 + ω13 + ω15 + ω16 + ω8 + ω4 + ω2 + ω.

Let θ := 2π/17. So
x1 = 2

(
cos θ + cos 2θ + cos 4θ + cos 8θ

)
.

The unique conjugate of x1 over Q is

x2 := σ(x1) =
8∑
i=1

ω32i+1
= 2
(
cos 3θ + cos 5θ + cos 6θ + cos 7θ

)
.

A direct calculation yields x1 + x2 = −1 and x1x2 = −4, thus x1, x2 are the roots of the
polynomial

X2 +X − 4,

so K1 = Q(
√

17), x1 = −1+
√
17

2 and x2 = −1−
√
17

2 .

Now we determine K2. The field K2 is generated over K1 by any element of Q(ω) fixed
by σ4 but not by σ2. a candidate is

y1 = ω + σ4(ω) + σ8(ω) + σ12(ω) = ω + ω4 + ω13 + ω16 = 2(cos θ + cos 4θ).
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The unique conjugate of y1 over K1 is

y2 := σ2(y1) = σ2(ω) + σ6(ω) + σ10(ω) + σ14(ω) = ω2 + ω8 + ω9 + ω15.

We have: y1 + y2 = x1 and y1y2 = −1, thus y1, y2 are the roots of the polynomial

X2 − x1X − 1,

so K2 = K1(
√
x21 + 4) = Q(

√
2(17−

√
17)), y1 =

x1+
√
x21+4

2 and y2 =
x1−
√
x21+4

2 .
The same method is used for determining the field K3, generated over K2 by any

element of Q(ω) fixed by σ8 but not by σ4. We choose the element

z1 := ω + σ8(ω) = ω + ω16 = 2cosθ.

The unique conjugate of z1 over K2 is the element

z2 := σ4(z1) = σ4(ω) + σ12(ω) = ω4 + ω13.

z1 + z2 = y1 and z1z2 = ω3 + ω5 + ω12 + ω14. Note that z1z2 can be calculated from x2
the same way y1 is calculated from x1. Thus

z1z2 =
x2 +

√
x22 + 4

2
= −1 +

√
17

4
+

1

2

√
17 +

√
17

2
=: α.

Therefore, z1, z2 are the zeros of the polynomial

X2 − y1X + α,

and K3 = K2(
√
y21 − 4α). Now

cos

(
2π

17

)
=
z1
2

=
−1 +

√
17 +

√
34− 2

√
17 +

√
68 + 12

√
17− 4

√
34− 2

√
17− 8

√
34 + 2

√
17

16
.

In order to compute Q(ω), one can proceed as above, or just note that

ω = cos θ + i.sin θ = cos θ + i
√

1− cos2 θ.

These computations give an explicit way for constructing the regular 17-gon with compass
and straightedge, since we see that only square roots are involved in the formulas.
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8.4 Solvability by Radicals

8.4.1 The Galois characterization of solvable polynomials

All the fields of this section have characteristic 0.

Definition 8.14. Let K be a field and P ∈ K[X]. The polynomial P is said to be
solvable by radicals if there exists a field L in which P splits in linear factors, and a
tower of subfields of L:

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn = L

such that for any 1 ≤ i ≤ n, Ki is of the form Ki−1( ni
√
ai), for some ai ∈ Ki−1 and ni ∈ N∗.

Theorem 8.15. Let K be a field of characteristic 0 and P ∈ K[X] be a solvable polyno-
mial. Then the Galois group GP of P is solvable.

Proof. By Proposition 10.9 , it suffices to show that GP is a quotient of a solvable group
by a normal subgroup. Let

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn

be a tower of fields such that Kn contains all the roots of P , and for every 1 ≤ i ≤ n,
Ki is of the form Ki−1( ni

√
ai), for some ai ∈ Ki−1 and ni ∈ N∗. Set m :=

∏
ni, and let

α be a primitive mth root of unity. Let M be a finite Galois extension of K containing
Kn(α) - define M for instance as the splitting field over K of the minimal polynomial of a
primitive element of Kn(α)/K. Let L be in M the Galois closure of Kn(α) over K. Thus
L/K is a finite Galois extension containing all the roots of P , so by Theorem 7.2, GP is
a quotient of Gal(L/K). It is then sufficient to show that Gal(L/K) is solvable.

It is easy to see that L is the smallest subfield of M containing all the σ
(
Kn(α)

)
for

σ ∈ Gal(M/K), so L is generated over K by α and all the σ( ni
√
ai) for σ ∈ Gal(M/K)

and i ≤ n. We adjoin these elements one by one to K and to obtain a finite sequence of
subfields:

K ⊂ K(α) ⊂ K(α, n1
√
a1) ⊂ K(α, n1

√
a1, n2
√
a2) ⊂ · · · ⊂ Kn(α) ⊂ Kn(α, σ( n1

√
a1)) ⊂ · · ·

where each field E′ is generated over its predecessor E by an mth root of unity for the first
one, and by some nthi root for the rest, and E contains the nthi roots of unity. Therefore,
E′/E is Galois, and by Section 6.3, Gal(E′/E) is abelian. The corresponding sequence

G = Gal(L/K) ⊃ Gal(L/K(α)) ⊃ Gal(L/K(α, n1
√
a1)) ⊃ · · · ⊃ Gal(L/L) = {id}

is then a composition series for Gal(L/K), and the quotient of Gal(L/E) by its successor
Gal(L/E′) is by Theorem 7.2 isomorphic to the abelian group Gal(E′/E). This shows
that Gal(L/K) is solvable.

Now we prove a converse to Theorem 8.15. We start by a particular case.

Definition 8.16. An extension L/K is said to be cyclic if Gal(L/K) is cyclic.

Proposition 8.17. Let p be a prime number, K be a field containing a primitive pth root
of unity, and L/K be a cyclic Galois extension of order p. Then L = K( p

√
a) for some

a ∈ K.
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Proof. The extension L/K is finite and Galois, thus normal and separable. Let x0 be a
primitive element of L/K (in fact any element of L \ K is primitive) and P ∈ K[X] be
the minimal polynomial of x0 over K. Then the degree of P is p, and by separability, P
has p distinct roots x0, · · · , xp−1 all of which are in L by normality.

The group Gal(L/K) is cyclic and has order p, it is thus generated by a permutation σ of
order p of the xi. The order of a product of disjoint cycles is the least common multiple
of the lengths of these cycles. So since p is prime, σ is a cycle of length p, and without
loss of generality we can assume that σ = (x0, x1, · · · , xp−1).

Let α ∈ K be a primitive pth root of unity, and let

x := x0 + αx1 + α2x2 + · · ·+ αp−1xp−1.

For all i ≤ p, σi(x) = α−ix. So

σi(xp) = (σi(x))p = (α−ix)p = α−pixp = xp.

Since σ generates Gal(L/K), then xp ∈ Fix(Gal(L/K)) = K, and x is a pth root on K.
It remains to show that x can be chosen to be a primitive element of the extension L/K.
Since [L : K] is prime, it suffices to show that x can be chosen in L \K.

If x ∈ K, then x = σ(x) = α−1x, thus x = 0.

For i = 0, · · · , p− 1, denote by

x(αi) := x0 + αix1 + (αi)2x2 + · · ·+ (αi)p−1xp−1.

It suffices then to show that for some i = 1, · · · , p−1, x(αi) 6= 0. If this were not the case,
then we have

x(1) = x(1) +

p−1∑
i=1

x(αi) = px0 +

p−1∑
i=1

(
xi

p−1∑
j=0

αij
)

= px0 +

p−1∑
i=1

xi.0 = px0.

Since x(1) =
∑
xi ∈ K, then x0 ∈ K and this contradicts the choice of x0 as a primitive

element of L/K.

Theorem 8.18. Let K be a field of characteristic 0, and P ∈ K[X] be such that the
Galois group GP of P is solvable. Then P is solvable.

Proof. Let n be the order of GP and α be a primitive nth root of unity. The Galois group
G of P over K(α) is a subgroup of GP , thus it is solvable. Let

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gq = {1}

be a composition series for G such that for Gi/Gi+1 is cyclic of prime order pi, for every
i ≤ q − 1. Let Ki = Fix(Gi). We have then a tower of subfields

K0 = K(α) ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kq,

56



8.4 Solvability by Radicals 8 APPLICATIONS

where Kq is the splitting field of P over K(α). The extension Kq/K0 is Galois, so Theorem
7.2 applies. For all i < q, Gi+1 is a normal subgroup of Gi, so Ki+1 is a normal extension
of Ki. Furthermore,

Gal(Ki+1/Ki) ' Gi/Gi+1,

which is a cyclic group of prime order pi, and pi divides n. So Ki contains a primitive pthi
root of unity, and Proposition 8.17 applies. Therefore, for every i ≤ q−1, Ki+1 = Ki( pi

√
ai)

for some ai ∈ Ki, thus P is solvable.

We have showed the following.

Theorem 8.19. Let K be a field of characteristic 0, and P ∈ K[X]. Then P is solvable
if and only if its Galois group is solvable.

8.4.2 Examples of non-solvable polynomials

Theorem 8.20 (Abel-Ruffini). Let K be a field of characteristic 0 and n ≥ 5. Then the
general polynomial of degree n on K is not solvable.

Proof. Let x1, · · · , xn be distinct indeterminates and s1, · · · , sn be their elementary sym-
metric polynomials. The general polynomial of degree n is (by definition) the polynomial
Pn(X) ∈ K(s1, · · · , sn) defined by

Pn(X) := Xn − s1Xn−1 + s2X
n−2 + · · ·+ (−1)n−1sn−1X + (−1)nsn,

and the Galois group of Pn is the symmetric group Sn. For n ≥ 5, Sn is not solvable, so
by Theorem 8.15, the polynomial Pn is not solvable.

Proposition 8.21. Let K be a subfield of R, and let P ∈ K[X] be an irreducible poly-
nomial of prime degree p ≥ 5. Suppose moreover that P has exactly two non-real roots.
Then P is not solvable.

Proof. For this we show that the Galois group G of P is Sp, and by Lemma 10.11, it
suffices to show that G contains a cycle of length p and a transposition.

Since P is irreducible and has order p, then the order of G is divisible by p, thus G contains
a permutation σ of order p. Since p is prime, then σ is a cycle of length p. As for the
transposition, note that the complex conjugation is an R-automorphism, so a fortiori a
K-automorphism, exchanging the two non-real roots of P and fixing the others. Thus
G contains the transposition which exchanges the two non-real roots of P and fixes the
others.

Example. The polynomial P = X5 − 4X + 2 ∈ Q[X] is not solvable.

In order to see this, note first that by Eisenstein’s criterion, P is irreducible. Furthermore,
the derivative P ′ of P is 5X4 − 4, so P ′ changes sign twice on R. Now P (0) and P (2)
are positive, P (−2) and P (1) are negative, so P has three real and two complex non-real
roots. The non solvability of P follows by Proposition 8.21.

Theorem 8.22. [Galois] Let K be a field of characteristic 0 and P ∈ K[X] be an irre-
ducible polynomial of prime degree p. Then P is solvable if and only if all its roots are
rational functions of any two them.
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Proof. Denote by L the splitting field of P over K, and by G the group Gal(L/K). The
group G is regarded as a permutation group on the set S of roots of P . Since P is
irreducible, then G is transitive in its action on S. Note that |S| = p.

Suppose first that P is solvable, and let x and y be any two distinct roots of P . We want
to show that L = K(x, y). By Theorem 8.19, the group Gal(L/K) is solvable. From
Exercise 10.12 it follows that Gal(L/K(x, y)) = {id}. Therefore K(x, y) = L by Theorem
7.2.

Suppose now that L = K(x, y) for any two distinct roots x, y of P . So the unique
permutation of G fixing two elements of S is the identity. Exercise 10.12 yields that G is
solvable. By Theorem 8.19, the polynomial P is solvable.

Corollary 8.23. [Galois] Let K be a subfield of R and P ∈ K[X] be irreducible of prime
degree. Furthermore, we assume that P has at least two real roots, and at least one non-real
root. Then P is not solvable.

Proof. Let x, y be distinct real roots and z be a non-real root of P . Since K ⊂ R, then
z /∈ K(x, y). By Theorem 8.22, P is not solvable.

Example. The polynomial X11 − 6X + 3 is not solvable.

8.4.3 Cubic equations revisited

We saw the Cardano formulas expressing the roots of a cubic polynomial P = X3+pX+q
involve non-real radicals, even in the case where all the roots are real. We show now that
if P is irreducible, then such radicals cannot be avoided in a formula expressing the roots.

Notation: For a field F and a polynomial P ∈ F [X], we denote by G(F ) the Galois
group of P over F .

Proposition 8.24. Let K ⊂ R be a field, and P ∈ K[X] be irreducible of odd degree n.
Assume that the splitting field L of P is generated by one of the roots. Let p be a prime
number, c be an element of K, and p

√
c be the real pth root of c. Then the Galois group of

P is not reduced by the addition of p
√
c, (i.e. G(K) ' G(K( p

√
c))).

Proof. Since P is irreducible and L is generated by one root, then L is generated by any
root. The polynomial P has odd degree, so it has a real root x1. Therefore L = K(x1) is
a real field. Suppose, towards a contradiction, that

|G(K( p
√
c))| < |G(K)|.

From this it follows that

[K( p
√
c, x1) : K( p

√
c)] < [K(x1) : K].

Since K is a real field and p
√
c /∈ K, then the polynomial Xp − c is irreducible on K, and

[K( p
√
c) : K] = p. Now we have the following.

[K(x1,
p
√
c) : K] = [K(x1,

p
√
c) : K( p

√
c)].p = [K(x1,

p
√
c) : K(x1)].[K(x1) : K],
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so [K(x1, p
√
c) : K(x1)] < p. Since p is a prime, it is easy to check that p

√
c ∈ K(x1). But

the extension K(x1)/K is Galois, since it contains p
√
c, it has to contain all its complex

conjugates. Contradiction.

To prove our statement on the cubic equations, apply Proposition 8.24 for an irre-
ducible cubic polynomial P ∈ R[X] having only real roots (in which case the discriminant
−4p3 − 27q2 is positive). Take for K the field generated by the coefficients of P and a
square root d of the discriminant. By Section 6.1, the splitting field of P is generated on
K by any one of the roots. The claim follows directly.
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9 Infinite Galois theory

9.1 Topological groups

Definition 9.1. A set G endowed with a group structure and a topology is said to be a
topological group if the maps

(g, h) 7→ g.h

and
g 7→ g−1

are continuous.

If G is a topological group and a ∈ G, then the maps x 7→ a.x, x 7→ x.a, x 7→ a−1.x
and x 7→ x.a−1 are continuous, for they are compositions of continuous maps. From this
it follows that if H is a subgroup of G, then the cosets of H are open (respectively closed)
if H is open (respectively closed). Since G \H is a union of such cosets, then H is clopen
if it is open, or closed of finite index.

Proposition 9.2. Let G be a topological group and V be a neighbourhood base for the
identity element e of G. Then we have the following.

1. For all V1, V2 ∈ V, there is V ′ ∈ V such that e ∈ V ′ ⊂ V1 ∩ V2.

2. For all V ∈ V, there exists a V ′ ∈ V such that V ′V ′ ⊂ V .

3. For all V ∈ V, there exists a V ′ ∈ V such that V ′ ⊂ V −1.

4. For all V ∈ V and all g ∈ G, there exists a V ′ ∈ V such that V ′ ⊂ g−1V g.

5. For all g ∈ G, the set {g.V : V ∈ V} is a neighbourhood base for g.

Conversely, if V is a nonempty family of subgroups of G satisfying the properties 1, 4, then
there is a unique topology on G for which 5 holds. For this topology, all the V ∈ V are
open.

Proof. If G is a topological group and V is an in the statement, then 1, 2, 3, 4 and 5 are
clear. Suppose now that V is a set of subsets of G satisfying the properties 1 − 4, and
define

T := {O ⊂ G : ∀x ∈ O∃U ∈ V(xU ⊂ O)}.

The empty set, G, and the union of a family of elements of T are clearly in T . Furthermore,
it follows by 1 that the intersection of two elements of T is again in T . This shows that
T is a topology on G, and from the definition of T it follows that the set {g.V : V ∈ V}
is a neighbourhood base for g, for all g ∈ G.

Let abV be a neighbourhood of ab. Let V ′ be such that V ′V ′ ⊂ V , V1 be such that
b−1V1b ⊂ V ′ and V2 = V ′. Then b−1V1bV2 ⊂ V ′V ′ ⊂ V , and aV1bV2 ⊂ abV . This shows
that the application (a, b) 7→ ab is continuous.

In order to show that the application x 7→ x−1 is continuous, it suffices to show that for
all a ∈ G and V ∈ V, there exists U ∈ V such that U−1a−1 ⊂ a−1V . Fix a−1 and V . Let
U ′ ∈ V be such that U ′ ⊂ a−1V a, and let U ∈ V be such that U−1 ⊂ U ′. It is clear then
that U−1 ⊂ a−1V a, thus U−1a−1 ⊂ a−1V .
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9.2 The Krull topology on the Galois group

Proposition 9.3. If L is a normal separable extension of a field K, then L is a normal
separable extension of any intermediate field of the extension L/K.

Proof. Clear.

Proposition 9.4. Let K be a field, S ⊂ K[X] be a set of separable polynomials, and L
be a splitting field of S over K (note that the condition on L holds if L/K is any normal
separable algebraic extension). Let K1,K2 be two intermediate fields, and σ : K1 7→ K2 be
a K-isomorphism. Then σ extends to a K-automorphism σ′ of L.

Proof. This is an application of Zorn’s Lemma. Let

X := {(E, τ) : K1 is a subfield of E and τ is an isomorphism extending σ}.

Define and ordering ≤ on X in the obvious way. It is easy to check that (X,≤) is an
inductive set, so has by Zorn’s lemma a maximal element (E0, τ0). We claim that E0 = L
and τ0 is an automorphism.

If E0  L, let Q ∈ S be such that there exists α ∈ L \ E0 with Q(α) = 0. Let P be the
minimal polynomial of α over E0. Since τ0P is a factor of Q, and since Q splits in linear
factors in L, then we can choose a root β ∈ L of the polynomial τ0P . By Proposition 5.22,
τ0 extends to an isomorphism τ1 : E0(α)→ τ0(E0)(β), contradicting the maximality of τ0.

Let a ∈ L, P be its minimal polynomial over K, and n be the degree of P . Since L
contains exactly n roots of P , the same holds for τ0(L). Therefore, a is an element of
τ0(L), and τ0 is an automorphism of L.

Theorem 9.5. Let L/K be a field extension. Then the following are equivalent:

1. The extension L/K is Galois.

2. The extension L/K is normal and separable.

3. L is the splitting field over K of a set of separable polynomials.

Proof. 1. 1−→ 2: Let a be an element of L, and let Q be the minimal polynomial of
a over K. The image of a by an element of Gal(L/K) is again a root of Q, thus a
has finitely many distinct images under the action of Gal(L/K), say a1 = a, · · · , ap.
Let P := (x− a1). · · · .(x− ap). The polynomial P is separable since all its roots are
distinct, and has clearly all its roots in L. Furthermore, P is fixed under the action
of Gal(L/K). Since the extension is Galois, then P ∈ K[X]. We showed that every
a ∈ L is a root of a separable polynomial P ∈ K[X] having all its roots in L. So the
extension L/K is normal and separable.

2. 2−→ 3: Clear.

3. 3−→ 1: Let a be an element of L \ K, and let A ⊂ L be the splitting field of
some separable polynomial over K, with a ∈ A. By Theorem 5.48, the extension
A/K is Galois, normal and separable. Let σ0 ∈ Gal(A/K) be such that σ0(a) 6= a.
By Proposition 9.4, σ0 extends to an element σ ∈ Gal(L/K), and it is clear that
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σ(a) 6= a. This shows that Fix(Gal(L/K)) = K, thus that the extension L/K is
Galois.

Proposition 9.6. Let L/K be a Galois extension, and F be an intermediate field. Then
L/F is a Galois extension.

Proof. Clear by Theorem 9.5.

Proposition 9.7. Let L/K be a Galois extension. Then there is a unique topological
group structure on Gal(L/K) for which a neighbourhood base of 1 is given by the sets of
the form Gal(L/F ), where F/K is a finite intermediate extension. For this topology, the
sets Gal(L/F ) with F/K normal and finite, form a neighbourhood base of 1 consisting of
open normal subgroups.

Proof. Let L/K be a Galois extension. It suffices to show that conditions 1− 4 of Propo-
sition 9.2 hold for

V := {Gal(L/F ) : K ⊂ F ⊂ L ∧ [F : K] <∞}.

Condition 1 is satisfied because the field generated by two finite dimensional extensions
of K is again finite dimensional over K. Conditions 2 and 3 are satisfied since Gal(L/F )
is a group. Now let F be a finite intermediate extension, and F ′ be the normal closure of
F in L. It is easy to check that F ′/F is a finite Galois extension. Therefore, for all τ ∈
Gal(L/K), τGal(L/F ′)τ−1 ⊂ Gal(L/F ′) ⊂ Gal(L/F ), thus Gal(L/F ′) ⊂ τ−1Gal(L/F )τ .
This proves 4 and the second statement.

Definition 9.8. Let L/K be a Galois extension. Then the Krull topology on Gal(L/K)
is the topology given by Proposition 9.7. Namely, for σ ∈ Gal(L/K), a neighbourhood
base of σ is given by the sets of the form

{σ.Gal(L/F ) : K ⊂ F ⊂ L ∧ [F : K] <∞}.

From now on, the Galois group of an extension L/K will be considered with its Krull
topology.

Proposition 9.9. Let L/K be a Galois extension, and F/K be an intermediate finite
Galois extension. Then the map{

Gal(L/K) → Gal(F/K)

σ 7→ σ|F

is continuous and onto (Gal(F/K) is endowed with the discrete topology).

Proof. Because F/K is normal, the map is well defined. Surjectivity follows by Proposition
9.4, and continuity by the fact the the inverse image of 1, namely Gal(L/F ), is an open
subset of Gal(L/K).

Proposition 9.10. Let L/K be a Galois extension. Then Gal(L/K) is a compact totally
disconnected group.
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Proof. We show first that Gal(L/K) is Hausdorff. Let σ 6= τ ∈ Gal(L/K), and let
a ∈ L be such that σ(a) 6= τ(a). Then σGal(L/K(a)) and τGal(L/K(a)) are disjoint
neighbourhoods of σ and τ .

For every finite extension F of K, the group Gal(L/F ) is open, then it is also closed.
The same holds for all the cosets σGal(L/F ) for σ ∈ Gal(L/K). This shows that the
group Gal(L/K) has a topology base consisting of clopen set, this group is then totally
disconnected. (This is also equivalent to say that the connected components of Gal(L/K)
are the singletons.)

Let F be the set of intermediate fields F such that F/K is finite and Galois. Define the
map

ϕ :=

Gal(L/K) →
∏
F∈F

Gal(F/K)

σ 7→ (σ|F )F∈F

.

The group
∏
Gal(F/K) is endowed with the product topology. Note that ϕ is an injective

group homomorphism. Let F0 ⊂ F be finite, and

V :=
∏
i∈F0

{ai} ×
∏

F∈F\F0

Gal(F/K)

be a basic open neighbourhood of 1 (so all the ai are 1). Then ϕ−1(V ) is Gal(L/M),
where M is the finite extension of K generated by the subfields of F0. This shows that ϕ
is continuous. On the other hand, if M ∈ F , then

ϕ(Gal(L/M)) = ϕ(Gal(L/K)) ∩
(
{1} ×

∏
F∈F\{M}

Gal(F/K)

)
.

Thus ϕ defines an homeomorphism between Gal(L/K) and its image. It suffices then to
show that ϕ(Gal(L/K)) is compact.

For F ∈ F , the group Gal(F/K) is finite, thus compact. By Tychonoff’s theorem, the
product

∏
Gal(F/K) is compact. In order to show that the group ϕ(Gal(L/K)) is com-

pact, it suffices to show that it is closed in
∏
Gal(F/K). But the set ϕ(Gal(L/K)) is

the subset of
∏
Gal(F/K) of sequences (σF )F such that, if F is a subfield of F ′, then

σF ′ |F = σF . By Proposition 9.9, the restriction operation is continuous. Therefore
ϕ(Gal(L/K)) is an intersection of closed sets of

∏
Gal(F/K), so it is a closed set.

9.3 The fundamental theorem of infinite Galois theory

Lemma 9.11. Let L/K be a Galois extension, H be a subgroup of Gal(L/K), F ⊂ L be
a finite Galois extension of K, and σ be an element of Gal(L/K) be such that

σGal(L/F ) ∩H = ∅.

Then there is an element of F fixed by H but not by σ.

Proof. Let HF := {h|F : h ∈ H} (HF ⊂ Gal(F/K)), and H ′F be the subgroup of
Gal(F/K) generated by HF and σ|F . The condition on σ and H implies that no element of
H coincides with σ on F , thus thatHF $ H ′F . By Theorem 7.1, Fix(H ′F ) $ Fix(HF ) ⊂ F .
The claim follows.
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Theorem 9.12. Let L/K be a Galois extension, and G := Gal(L/K).

1. Let F be an intermediate field. Then Gal(L/F ) is a closed subgroup of G, and

Fix(Gal(L/F )) = F.

2. Let H be a subgroup of G. Then Gal(L/Fix(H)) = H̄, where H̄ denotes the closure
of H in G for the Krull topology.

Proof. 1. For every finite extension M/K with M ⊂ F , Gal(L/M) is open, hence it
is also closed. So the Gal(L/F ) is closed, as it is the intersection of closed sets.
The extension L/F is Galois by Proposition 9.6, and the second statement follows
immediately.

2. Gal(L/Fix(H)) is a closed subgroup of Gal(L/K) containing H, so it contains
H̄. For the other direction, let σ ∈ Gal(L/K) \ H̄. It suffices to show that σ /∈
Gal(L/Fix(H)). Let F ⊂ L be a finite Galois extension of K such that σGal(L/F )∩
H = ∅. Then by Lemma 9.11, there is an element α ∈ Fix(H) with σ(α) 6= α. The
required result follows directly.

We state now the fundamental theorem of infinite Galois theory.

Theorem 9.13. Let L/K be a Galois extension. Let F be the set of intermediate fields
of L/K, and G be the set of closed subgroups of Gal(L/K).
Denote by Fix : G −→ F the application which to a subgroup H of Gal(L/K) associates
the fixed field of H, and by G : F −→ G the application which to an intermediate field F
associates the Galois group Gal(L/F ). Then the following hold:

1. Fix and G define reciprocal bijections, decreasing for the inclusion.

2. Fix and G define by restriction reciprocal bijections between the set F ′ of normal
extensions of K contained in L, and the set G′ of normal subgroups of Gal(L/K).

3. If F and F ′ are two elements of F , then F ′ is a normal extension of F if and only
if Gal(L/F ′) is a normal subgroup of Gal(L/F ). In this case we have

Gal(F ′/F ) =
Gal(L/F )

Gal(L/F ′)
.

4. A closed subgroup H of Gal(L/K) is open if and only if Fix(H) has finite degree
over K, in which case [Fix(H) : K] = (Gal(L/K) : H).

Proof. 1. This is a direct consequence of Theorem 9.12.

2. • Let F ∈ F ′. Then the operation from Gal(L/K) to Gal(F/K), which to every
σ associates its restriction to F , is a well defined group homomorphism, and
admits Gal(L/F ) as its kernel. Hence G(F ) = Gal(L/F ) is a normal subgroup
of Gal(L/K), it is thus an element of G′.
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• Let H ∈ G′, x ∈ Fix(H), and y be any root of the minimal polynomial of x
over K. The aim is to show that y ∈ Fix(H). By Theorems 5.42 and 9.4, there
is τ ∈ Gal(L/K) such that τ(x) = y. Let σ be any element of H. Since H is
normal, then τ−1στ ∈ H, thus τ−1στ(x) = x, and στ(x) = τ(x). This shows
that y = τ(x) ∈ Fix(H). Therefore, the extension Fix(H)/K is normal, and
Fix(H) ∈ F ′.

3. Use the same arguments as the first part of 2 with F replacing K and F ′ replacing
F . Note that if f : G→ H is a group homomorphism, then G/Ker(f) ' Im(f).

4. Let H be a subgroup of Gal(L/K). Then Gal(L/K) is the disjoint union of the
cosets of H. If H is open, then these cosets are open. Since Gal(L/K) is compact,
then there are finitely many such cosets. Thus H has finite index in Gal(L/K).
Conversely, we already noted that a closed subgroup of Gal(L/K) of finite index is
open.

Let H be such a group. Then the left cosets of H corresponds to the K-embedding
of Fix(H) in L. But the number of K-embedding of Fix(H) in L is equal to the
degree of Fix(H)/K. Therefore, the index of H in Gal(L/K) is equal to the degree
of Fix(H)/K.

9.4 Galois groups as inverse limits

Definition 9.14. An ordered set (I,≤) is said to be directed if for any elements i, j ∈ I,
there is some k ∈ I such that k ≥ i and k ≥ j.

Definition 9.15. Let (I,≤) be a directed set, and C be a category.

1. An inverse system in C is a family (Ai)i∈I indexed by I together with morphisms
pij : Ai → Aj , for all i ≥ j, such that pii = idAi and for i ≥ j ≥ k, pjk ◦ pij = pik.

2. Let (Ai)i∈I be an inverse system in C. Let A be an object of C, together with a
family morphisms (pi : A→ Ai)i∈I . Suppose that for all i ≥ j, pij ◦ pi = pj . Then A
is said to be an inverse limit or a projective limit of the directed system (Ai)i∈I
if it has the following universal property: for any object B of C together with a
family morphisms (qi : B → Ai)i∈I such that for all i ≥ j, pij ◦ qi = qj , then there is
a unique morphism f : B → A such that for every i ∈ I, pi ◦ f = qi.

Remark 9.16. If an inverse limit of a directed system (Ai)i∈I exists, then it is unique up
to isomorphism, and will be denoted by Lim

←−
Ai.

Remark 9.17. 1. Let (Gi, pij)i∈I be an inverse system of groups, and let G be the
subgroup of

∏
i∈I Gi of the sequences (gi)i such that, for every i ≥ j, pij(gi) = gj .

For every element i ∈ I, let pi : G −→ Gi be the projection. If (H, (qi)i∈I) is such
that for all i ≥ j, qi ◦ pij = qj , then there exists a unique group homomorphism
f : H → G such that for every i ∈ I, pi ◦ f = qi: set f(x) := (qi(x))i∈I . Therefore,
(G, (pi)i∈I) is the inverse limit of the Gi.
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2. Let (Gi, pij)i∈I be an inverse system of topological groups, and let G be as above.
The group G is a subset of the topological group

∏
I Gi, so we endow G with the

subspace topology. The projections pi : G −→ Gi are continuous, and if (H, (qi)i∈I)
– qi : H −→ Gi continuous– is such that for all i ≥ j, qi ◦ pij = qj , then as above,
f(x) := (qi(x))i∈I is the unique group homomorphism from H to G such that for
every i ∈ I, pi ◦ f = qi. Furthermore, f is continuous. Therefore, (G, (pi)i∈I) is the
inverse limit of the Gi.

Definition 9.18. A topological group G is said to be profinite if it is the inverse limit
of a directed system of finite groups, each endowed with the discrete topology.

Proposition 9.19. Profinite groups are totally disconnected and compact.

Proof. Let G := Lim
←−

Gi ⊂
∏
I Gi, where all the Gi are finite. Then the subgroups of G of

the form (
(1)i∈I0 ×

∏
I\I0

Gi
)
∩G,

where I0 is a finite subset of I, is neighbourhood base of 1 consisting of subgroups which
are open, thus clopen. This shows that G is totally disconnected. For the compactness,
we repeat the same argument as in the the proof of Proposition 9.10.

Example. Let G := {(Z/nZ,+) : n ∈ N∗}. For any two natural numbers n,m > 0 such
that n|m, we define the group homomorphism pmn as being the natural projection from
(Z/mZ,+) to (Z/nZ,+). It is easy to check that G is an inverse system. Its inverse limit
is denoted by Ẑ.

Remark 9.20. Let L/K be a Galois extension, and F be the set of subfields F of L
which are finite Galois extension of K. Let (G,≤) be the set of groups of the form
Gal(F/K), F ∈ F , and ≤ be defined as follows:

Gal(F/K) ≤ Gal(F ′/K)⇐⇒ F ⊂ F ′.

The partially ordered set (G,≤) is clearly directed. For any two elements Gal(F/K) ≤
Gal(F ′/K) ∈ G, we define a group homomorphism from Gal(F ′/K) to Gal(F/K), which
to an element of the first group associates its restriction to F . This operation is well
defined since F/K is Galois, and thus G is an inverse system of finite groups. The inverse
limit of G is isomorphic to Gal(L/K): this has been shown in the course of the proof of
Proposition 9.10.

So we have the following:

Theorem 9.21. Let L/K be a Galois extension. Then Gal(L/K) is a profinite group,
for it is the inverse limit of the finite groups Gal(F/K), where F ⊂ L is a finite Galois
extension of K.

Definition 9.22. Let K be a perfect field, and Kalg be the algebraic closure of K. The
absolute Galois group of K is the Galois group of Kalg over K.

Example. The absolute Galois group of R is Z/2, and that of C is trivial. The absolute
Galois group of a perfect field K is trivial, if and only if K is algebraically closed.
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Let q be a power of a prime number. We showed in Section 5.2.1 that for every n > 0,
the field Fqn is the unique field of cardinality qn, thus Fq has exactly one extension of
degree n, and this extension is Galois. Furthermore, the Galois group of Fqn/Fq is cyclic
of order n, thus it is Z/nZ. It is easy to check that Fqn is a subfield of Fqm if and
only if n|m, in which case the restriction operation from Gal(Fqm/Fq) to Gal(Fqn/Fq)
corresponds to the natural projection from Z/mZ to Z/nZ. So the union (or the direct

limit, to be more exact) of all the Fqn is the algebraic closure of Fq, denoted by F algq , thus

the absolute Galois group of Fq is Ẑ.

9.5 Artin-Schreier Theorem

Theorem 9.23. [Artin-Schreier] Let K be a field of characteristic zero with finite absolute
Galois group. Then Kalg = K(

√
−1), and the absolute Galois group of K is either Z/2 or

{1}. Furthermore, if Kalg 6= K, then for every a ∈ K \ {0}, exactly one of a or −a is a
square in K.

Proof. Let G be the absolute Galois group of K. We show first that the order of G is of
the form 2n, then we prove that n is 0 or 1.

Let p be a prime number dividing |G|. The aim is to show that p = 2. By the theorems
10.6 and 7.1, there is an intermediate field F of Kalg/K such that [Kalg : F ] = p. Note
that Kalg/F is a Galois extension. Let ω ∈ Kalg be a primitive pth root of unity. Now
ω has degree at most p − 1 over F , and this degree divides the prime number p, for
p = [Kalg : F ]. Therefore, the degree of ω over F is 1, so ω ∈ F , and it follows Proposition
8.17 that Kalg = F ( p

√
a) for some a ∈ F . Let b := p

√
a, c := p

√
b, and σ be a generator of

Gal(Kalg/F ). Since cp
2 ∈ F , then

(σ(c))p
2

= σ(cp
2
) = cp

2
,

thus σ(c) = γc for some p2-th root of unity γ. Thus γp is a pth root of unity, so it lies in
F . Furthermore, since b /∈ F , then

b 6= σ(b) = σ(cp) = (σc)p = γpcp = γpb,

so γp 6= 1. It follows directly that γ is a primitive p2-th root of unity, and that γp is a
primitive pth- root of unity.

Because γp ∈ F , then γp = σ(γp) = (σ(γ))p, so for some k ∈ Z,

σ(γ) = γ1+pk.

Let
m :=

∑
j=0,··· ,p−1

(1 + pk)j .

Since σp = id, an easy calculation shows that

c = σp(c) = γmc,

thus m ≡ 0 modulo p2. The binomial formula yields for j ≤ p− 1, that

(1 + pk)j ≡ 1 + jpk modulo p2,
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so

0 ≡ m ≡
∑

j=0,··· ,p−1
(1 + jpk) ≡ p+

kp2(p− 1)

2
modulo p2,

thus

1 +
kp(p− 1)

2
≡ 0 modulo p.

This last identity shows that p cannot be odd, so p = 2, and that k 6= 0 modulo p.
Furthermore, since p = 2, then γ =

√
−1. Thus σ(

√
−1) 6=

√
−1, so

√
−1 /∈ K.

Suppose now that |G| = 2n for some n ≥ 2. Let F be an intermediate field of Kalg/K
with [Kalg : F ] = 4, and L ⊂ Kalg be an extension of degree two of F . By the same
argument as above,

√
−1 /∈ L, thus

√
−1 /∈ F . This is yields an immediate contradiction

since we can take L = F (
√
−1).

For the second part of the theorem, suppose that for some a ∈ K, neither
√
a nor√

−a are in K. Since [Kalg : K] = 2, then Kalg = K(
√
a) = K(

√
−a). So there exist

elements x, y ∈ K such that
√
−a = x+y

√
a. Squaring the to sides of the equality, we get

2xy
√
a = −a− x2 − ay2. Thus 2xy

√
a ∈ K. Since

√
a /∈ K, then x = 0 or y = 0. The fact√

−a is not in K forces y not to be 0. So x = 0, and y is equal to
√
−1. Thus

√
−1 ∈ K.

Contradiction.
If for some a 6= 0, both

√
a and

√
−a are in K, then

√
−1 =

√
−a/
√
a ∈ K. Contradiction.

Corollary 9.24. The field R admits no proper subfield of which it is a finite extension.

Proof. If such a subfield K exists, then C/K is a finite extension with degree strictly
greater than 2. This contradicts Theorem 9.23.

Definition 9.25. A field K is said to be real closed if every polynomial of odd degree on
K has a root in K, and for every a ∈ K∗, exactly one of a or −a has a square root in K.

Example. The field R of the reals is a real closed field.

Let K be a field of characteristic 0 with a non trivial finite absolute Galois group. We
showed that for every a ∈ K∗, exactly one of a or −a has a square root in K. Furthermore,
we showed that the absolute Galois group of K has order 2, thus [Kalg : K] = 2. Therefore,
an irreducible polynomial of K[X] has degree at most 2. It follows that every polynomial
P ∈ K[X] is the product of polynomials of K[X] of degree 1 or 2. So if P ∈ K[X] has
odd degree, then P has a root in K. This shows that K is a real closed field.

We proved the following theorem.

Theorem 9.26. Let K be a field of characteristic 0 and finite absolute Galois group. Then
K is either algebraically closed, or real closed.
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10 Results from group theory

10.1 Basics

Definition 10.1. Let (G, .) be a group, a ∈ G and n ∈ N \ {0}. We say that the order of
a is n if and only if n is the smallest natural number with an = 1.

Lemma 10.2. Let (G, .) be a group.

1. Let a ∈ G and n ∈ N \ {0}. If an = 1, then the order of a is defined, and n is a
multiple of the order of a.

2. If (G, .) is finite of cardinality m, then for any x ∈ G, we have that xm = 1. So if
G is finite, every x ∈ G has an order, and this order divides the cardinality of G.

3. For a ∈ G and n ∈ N\{0}, a has order n if and only if the cardinality of the subgroup
of G generated by a is n.

Proof.

Lemma 10.3. Let (G, .) be an abelian group, a, b be elements of G of order p, q ∈ N, with
p ∧ q = 1. Then a.b has order p.q.

Proof. Let m be the order of p.q. Since G is abelian, it is clear that (a.b)p.q = 1. So m
divides p.q. It is enough to show that p.q divides m. Now since p ∧ q = 1, it is enough to
show that both p and q divide m. By commutativity and the definition of m have that

am.bm = 1.

By the definitions of p, q we have that

ap.bq = 1.

Raise the first equation to the power p, the second to the power m, divide the first by the
second and use commutativity to get that

bm.(p−q) = 1.

So by lemma 10.2 we have that q divides m.(p − q). But q is prime to p − q since prime
to p. So q divides m. We show in the same way that p divides m.

Proposition 10.4. Let p be a prime number, and n ∈ N \ {0}. A group of order pn has
subgroups of order pm for all m ≤ n.

Definition 10.5. Let G be a group and p be a prime number. A subgroup H of G is said
to be a Sylow p-subgroup of G if the order of H is the maximal power of p dividing
the order of G. Equivalently, H is a Sylow p-subgroup of G if the order of H is a power
of p, and the index of H in G is prime to p.

Theorem 10.6. [Sylow I] Let G be a group, p be a prime and r ∈ N be such that pr

divides the order of G. Then there exists a subgroup of G of order pr.
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Definition 10.7. A composition series for a group G is a finite sequence of subgroups

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {1},

with Gi+1 normal in Gi for every 1 ≤ i ≤ n− 1. The group G is said to be solvable if it
has a composition series with each quotient Gi/Gi+1 abelian.

Example. Every abelian group is solvable.

Proposition 10.8. A finite group is solvable if and only if it has a composition series
satisfying one of the following properties:

1. Gi−1/Gi is solvable for each i.

2. Gi−1/Gi is abelian for each i.

3. Gi−1/Gi is cyclic for each i.

4. Gi−1/Gi is cyclic of prime order for each i.

Proof. It is clear that if G is solvable, then G has a composition series as in 1. Now if G
has a composition series as in 1, then by refining this composition series we have one as
in 2, which in turn can be refined to have 3 and 4 (for 4 use Sylow for example, or just
the fact that a simple abelian group is one of the Z/p for some prime p). It is clear that
a group having a composition series as in 4 is solvable.

Proposition 10.9.

1. Let G be a solvable group and H be a subgroup of G. Then H is solvable.

2. Let G be a solvable group and N be a normal subgroup of G. Then G/N is solvable.

3. Let G be a group, and N be a normal subgroup of G. Suppose furthermore that N
and G/N are solvable. Then G is solvable.

Let G be a group and x, y ∈ G. The commutator [x, y] of x and y is the element
x−1y−1xy. It is easy to see that x and y commute if and only if [x, y] = 1.

The first derived subgroup of G is the subgroup [G,G] of G generated by the commu-
tators. This group, also denoted by G(1), is a normal subgroup of G. By induction, we
define the the nth derived subgroup of G by

G(n) = [G(n−1), G(n−1)].

Let H be any normal subgroup of G. It is easy to check that G/H is abelian if and only
if [G,G] ⊂ H. From this it follows that G is solvable if and only if G(n) = {1} for some
n ∈ N.
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10.2 On the symmetric group

Sn denotes the group of permutations of {1, · · · , n}. A permutation of the form (i, j)
with i 6= j is called transposition . Every permutation σ is a (not uniquely determined)
product of transposition, and the number of transpositions needed to represent σ is either
always odd, in which case σ is said to be odd , or always even, in which case σ is said to
be even .

Let h be the group homomorphism from G to (Z2,+), which to σ associates 0 if σ is even,
and 1 if σ is odd. The kernel of h is a normal subgroup of Sn of index 2, it is called the
alternating group An.

It is easy to check that An is the subgroup generated by the cycles of length three. For this,
one checks that the product of two transposition (i, j)(k, l) is (i, j, l) if j = k, (i, j, k)(j, k, l)
if all i, j, k, l are distinct, and id if (i, j) = (k, l).

The following result is due to Galois.

Proposition 10.10. The groups An and Sn are not solvable for n ≥ 5.

Proof. It suffices to show that An is not solvable. For this, we show that the commutator
subgroup [An, An] of An is equal to An. Let (a, b, c) be any cycle of length three, and d, e
be distinct of a, b, c. Then

[(a, c, d)(b, c, e)] = (a, d, c)(b, e, c)(a, c, d)(b, c, e) = (a, b, c).

Any cycle of length three is in [An, An], so [An, An] = An.

Lemma 10.11. Let n ∈ N∗, and Sn be the group of permutations of {1, · · · , n}. Then Sn
is generated by any cycle of length n together with a transposition.

Proof. The equalities like

(1, 2, · · · , n)(1, 2)(1, 2, · · · , n)−1 = (2, 3)

show that a cycle of length n and a transposition generate all the transpositions, thus all
the permutations.

The results of the following exercise are due to Galois.

Exercise 10.12. Let p be a prime number. Denote by E = {0, · · · , p − 1} the elements
of the field Z/p and by Sp the group of permutations of E.
Let GA(p) be the group of affine bijective functions on Z/p, thus the functions fab defined
by fab(x) = ax+ b, where a 6= 0. Let t := f1,1 and ma := fa,0. The aim of this exercise is
to show that for any subgroup G of Sp, then G is solvable and transitive iff it is conjugate
to a subgroup H of GA(p).

1. (a) Show that mat = tama.

(b) Show that every element of GA(p) can be written in a unique way as a product
tbma, for some 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1. Conclude that |GA(p)| = p(p− 1).

(c) Show that the group [t] generated by t is a normal subgroup of GA(p)
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(d) Show that GA(p) is a transitive solvable group.

2. Let G be a transitive subgroup of Sp. Prove that every normal non-trivial subgroup
H of G is transitive.

3. (a) Let G be a solvable subgroup of Sp acting transitively on E. Let (Hi)0≤i≤r be a
composition series for G satisfying condition 4 of Proposition 10.8. Show that
Hr−1 is conjugate to the group [t].

(b) Deduce that G is conjugate to a subgroup of Sp containing t.

4. Let σ ∈ Sp be such that σtσ−1 ∈ GA(p). Show that σ ∈ GA(p)

5. Show that a transitive solvable subgroup G of Sp is conjugate to a subgroup H of
GA(p).

6. Let G be a transitive subgroup of Sp.

(a) Show that if G is solvable, then the unique element of G fixing at least two
points is the identity.

(b) Show the converse. Hint: show first that if the unique element of G fixing at
least two points is the identity, then there is τ ∈ G which has no fixed points.

Proof. 1. (a) Clear.

(b) If f(x) = ax+ b, then f = tbma. The rest is clear.

(c) Let tbma be an element of GA(p) and q ∈ N. Then

(tbma)
−1tqtbma = m−1a tq−b+bma = tqa

−1 ∈ [t].

(d) It is clear that GA(p) is transitive. As for the solvability, [t] is a normal abelian
subgroup of GA(p), and the quotient GA(p)/[t] is the group of the elements of
the form ma, a 6= 0, which is isomorphic to the multiplicative group of Z/p. So
GA(p)/[t] is abelian and GA(p) is solvable.

2. Let x, y ∈ E and f ∈ G be such that f(x) = y. If h ∈ H, then f−1hf ∈ H. This
shows that the orbit f−1H(y) is a subset of the orbit H(x). From this it follows
that |H(y)| ≤ |H(x)|, and by symmetry we get |H(y)| = |H(x)| for all x, y ∈ E. On
the other hand, it follows from the fact that H 6= {1} that each H-orbit contains at
least two elements. Since E is a disjoint union of orbits and |E| is prime, then E
consists of one orbit of H, so H is transitive on E.

3. (a) Hr−1 is a non-trivial normal subgroup of the transitive group G. By what has
been proved above, Hr−1 is transitive on E. Since Hr−1 is cyclic and transitive,
it is then generated by one cycle of length p, and is therefore conjugate to [t].

(b) Clear.

4. If σtσ−1 = tbma, it is then easy to check for k ≥ 1, that σtkσ−1 = tnmak , where
n =

∑
0≤i≤k−1 a

ib. Let k = p − 1, and suppose that a 6= 1. Then we have n = 0

modulo p, so σtp−1σ−1 = id, so tp−1 = id, contradiction.

Thus a = 1 and σtσ−1 = tb, and σt = tbσ. For x ∈ E, we have then σ(x + 1) =
σ(x) + b, so σ(x) = b.x+ σ(0) and σ = tσ(0)mb ∈ GA(p).
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5. Let (Hi)0≤i≤r be a composition series forG satisfying condition 4 of Proposition 10.8.
We saw that there exists σ ∈ Sp such that σHr−1σ

−1 = [t]. Now [t] = σHr−1σ
−1 is

normal in σHr−2σ
−1. So for τ ∈ σHr−2σ

−1,

τ−1tτ ∈ [t] ⊂ GA(p),

so by 4, τ ∈ GA(p). We showed that σHr−2σ
−1 ⊂ GA(p). By induction we show

that for all i, σHiσ
−1 ⊂ GA(p), so σGσ−1 ⊂ GA(p).

6. (a) Clear.

(b) Suppose that no other permutation than id fixes two points of Z/p. Let A ⊂ G
be the set of permutations with no fixed points. For i ∈ Z/p, let S(i) ⊂ G be
the set of permutations fixing i, and q be the cardinality of S(0).

By transitivity, |G| = p|S(i)|. So all the S(i) have cardinality q, and G has
order pq. By the assumptions, the group G is the disjoint union of A, the
S(i) \ {id} and {id}. Thus

pq = |A|+ p.(q − 1) + 1.

So |A| = p− 1, and there is τ ∈ G having no fixed points.

Let n be the order of τ . Then for all k < n, τk ∈ A (if τk fixes i, then it fixes
τ(i), thus τk = id). This shows that the orbits under the action of τ have all
cardinality n. Since p is prime, Z/p is a disjoint union of orbits and τ 6= id,
then n = p and τ is a p-cycle.

Therefore, G contains an element which is conjugate to t. Up to conjugation,
we can suppose that t ∈ G and that A = [t]. Let σ ∈ G. Since t has no fixed
points, then the same holds for σtσ−1. So σtσ−1 ∈ [t]. By 4, σ ∈ GA(p).
Therefore, G is a subgroup of GA(p), so G is solvable.
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